Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 457 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: [3H]Thymidine autoradiography ; Substantia nigra pars compacta ; Retrorubral field ; Ventral tegmental area ; Interfascicular nucleus ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous [3H]thymidine studies in Nisslstained sections in rats established that the substantia nigra pars compacta and the ventral tegmental area originate sequentially according to an anterolateral to posteromedial neurogenetic gradient. We investigated whether that same pattern is found in mice in the dopaminergic neurons in each of these structures. Using tyrosine hydroxylase immunostaining combined with [3H]thymidine autoradiography, the time of origin of dopaminergic midbrain neurons in the retrorubral field, the substantia nigra pars compacta, the ventral tegmental area, and the interfascicular nucleus was determined in postnatal day 20 mice. The dams of the experimental animals were injected with [3H]thymidine on embryonic days (E) 11–E12, E12–E13, E13–E14, and E14–E15. The time of origin profiles for each group indicated significant differences between populations. The retrorubral field and the substantia nigra pars compacta arose nearly simultaneously and contained the highest proportion of neurons, 49 to 37%, generated on or before E11. Progressively fewer early-generated neurons were found in the ventral tegmental area (20%), and the interfascicular nucleus (8.5%). In addition, anterior dorsolateral neurons in the substantia nigra and ventral tegmental area were more likely to be generated early than the posterior ventromedial neurons. These findings indicate that mouse and rat brains have nearly identical developmental patterns in the midbrain, and neurogenetic gradients in dopaminergic neurons are similar to those found in Nissl studies in rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: [3H]thymidine autoradiography ; Substantianigra pars compacta ; Retrorubral field, ventral tegmental area ; Interfascicular nucleus ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Immunocytochemical labeling for tyrosine hydroxylase and [3H]thymidine autoradiography were combined in wild-type mice and in mice homozygous for the weaver mutant gene (wv) to see whether the neurogenetic patterns of midbrain dopaminergic neurons was normal in the mutants and whether the degeneration of dopaminergic neurons was linked to their time of origin. Dams of wild-type and homozygous weaver mice were injected with [3H]thymidine on embryonic days (E) 11–E12, E12–E13, E13–E14, and E14-E15 to label neurons in the retrorubral field, the substantia nigra pars compacta, the ventral tegmental area, and the interfascicular nucleus as they were being generated. The quantitatively determined time of origin profiles indicated that wv/wv mice have the same time span of neurogenesis as +/+ mice (E10 to E14), but have significant deficits in the proportion of late-generated neurons in each dopaminergic population. In the retrorubral field and substantia nigra, weaver homozygotes had substantial losses of dopaminergic neurons and had a greater deficit in the proportion of neurons generated late while, in the ventral tegmental area and interfascicular nucleus, there were slight losses of dopaminergic neurons and only slight deficits in the proportion of late-generated neurons. These findings lead to the conclusion that the weaver gene is specifically targeting dopaminergic neurons that are generated late, mainly on E13 and E14.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...