Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Somatostatin ; Immunohistochemistry Ontogeny ; Brain ; Teleost
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The development of somatostatin-immunoreactive neurons and fibres was studied, using immunocytochemistry, in the brain of the brown trout. Somatostatinergic perikarya were found in many regions including several telencephalic areas, the preoptic nucleus, anterior tuberal and lateral tuberal nuclei, the lateral recess nucleus, dorsal tuberal nucleus, the pre- and pseudoglomerular nuclei, central thalamic nucleus, optic tectum, interpeduncular nucleus, several isthmal and reticular nuclei and the solitary fascicle nucleus. The ventrolateral area of the telencephalon and the nucleus lateralis tuberis are the first immunoreactive nuclei to appear in ontogeny, and cells of some telencephalic areas and of the lateral optic recess nucleus, the latest. Somatostatin-immunoreactive fibre tracts innervate the hypophysis and different regions of the brain. The most richly innervated areas in adults are the dorsolateral telencephalic area and the organon vasculosum laminae terminalis. Two patterns of production of somatostatinergic cells were observed: that of populations in which cell numbers increase over the lifetime of the fish, and that of populations whose cell number is established early in development or even diminishes in adulthood. These results provide interesting contrasts to those previously reported in birds and mammals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Key words Glia ; Calbindin ; Immunocytochemistry ; NADPH-diaphorase ; Salmo trutta fario
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Calcium-binding proteins of the EF-hand family are widely distributed in the vertebrate central nervous system. In the present study of the trout brain, immunocytochemistry with a monoclonal antibody against chick gut calbindin-28k and a polyclonal antibody against bovine S100 protein specifically stained ependymocytes and radial glia cells with identical patterns. Western blot analysis of trout brain extracts with the antibodies to S100 and calbindin stained the same low-molecular-weight (10 kDa) protein band. In rat brain extracts, however, the monoclonal antibody to calbindin recognized a major protein band with molecular weight corresponding to that of calbindin-28k. This indicates that the trout protein is a new calcium-binding-like (calbindin-like) molecule that is immunologically related to both S100 and calbindin. Immunocytochemical studies of the trout brain using the antibodies to CaB and S100 showed that ependymocytes were stained in most ventricular regions, except in a few specialized ependymal areas of the ventral telencephalon, epithalamus, hypothalamus (including the paraventricular organ and saccus vasculosus) and brain stem. Immunocytochemistry also indicated the presence of calbindin-like protein in radial glia cells of several regions of the brain (thalamus, pretectal region, optic tectum, and rhombencephalon). Differences in immunoreactivity between neighbouring ependymal areas suggest that this protein may be a useful marker of different territories. All immunoreactive glial cells were nicotin-adenin-dinucleotide-phosphate diaphorase-positive, although this enzymohistochemical reaction is not specific for these glial cells since it reveals oligodendrocytes and some neurons. Immunoreactivity appears at different developmental stages in the different brain regions, with a broadly caudorostral gradient, suggesting that the expression of this protein is developmentally regulated. Comparison of the distribution of the calbindin-like protein with that of glial acidic fibrillary protein indicates that calbindin-like immunocytochemistry is a specific technique for revealing radial glia and ependymocytes in the trout.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 216 (1993), S. 209-223 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The gross development of the trout inner ear between embryonic and juvenile stages was studied by light microscopy. The otocyst has already formed in 3-4 mm embryos. The semicircular canals begin to separate from the utriculo-saccular cavity in 6 mm embryos, the anterior canal first, then the posterior and the horizontal canal later. The formation of the saccular cavity begins in 7 mm embryos, whereas that of the lagena occurs in 18 mm fry. The first macular primordia appear before the separation of cavities. The anterior and horizontal crests arise from the primordium of the utricular macula, and the posterior crest, macula lagena, and macula neglecta arise from that of the saccular macula. The macula lagena and macula neglecta appear later. The sensory areas of the labyrinth and the number of receptor cells grow continuously between the embryonic and juvenile stages. © 1993 Wiley-Liss, Inc.
    Additional Material: 44 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 216 (1993), S. 241-257 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The study of the sensory organs of the trout labyrinth by means of electron microscopy show that hair cells differentiate gradually in these organs; all of them produce new cells over a long period. The course of cytodifferentiation follows a similar pattern in all organs. Afferent nerve fibers and terminals are found at approximately the same time that sensory cells are being differentiated; the efferent synapses appear latter in development. The maturation of the both types of synapses is described. © 1993 Wiley-Liss, Inc.
    Additional Material: 40 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...