Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Porous ZrO2 ceramics were fabricated by compacting a fine ZrO2 powder, followed by pressureless sintering. Two unidirectional pressures of 30 and 75 MPa were used to prepare the green compacts. The strength and the fracture toughness of porous ZrO2 specimens sintered from the compacts prepared by 75 MPa were substantially higher than those by 30 MPa, especially for the specimens with low porosity. However, the corresponding Young's moduli were identical. This caused the strain to failure of these porous bodies to increase significantly with increasing compaction pressure. Microstructural analyses showed that a number of voids and small flaws existed in the green compacts prepared by the lower pressure, due to the agglomeration of fine ZrO2 grains. It was revealed that the ZrO2 agglomeration resulted in a localized nonuniform shrinkage and degraded the mechanical properties of porous ZrO2 ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This work proposes a new approach, based on the reaction Si3N4+ 2B2O3+ 9C → 3SiC + 4BN + 6CO, to synthesize an SiC–BN composite. The composite was prepared by reactive hot pressing (RHP), at 2000°C for 60 min at 30 MPa under an argon atmosphere, following a 60 min hold at 1700°C without applied pressure before reaching the RHP temperature. TG-DTA results showed that a nitrogen atmosphere inhibited denitrification somewhat and retarded the reaction rate. The chemical composition of the obtained material was consistent with theoretical values. FE-SEM observation showed that in situ-formed SiC and BN phases were of spherical morphology with very fine particle size of ∼100 nm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Single-phase β′-SiAlON (Si6−zAlzOzN8−z, z= 0–4.2) ceramics with porous structure have been prepared by pressureless sintering of powder mixtures of á-Si3N4, AlN, and Al2O3 of the SiAlON compositions. A solution of AlN and Al2O3 into Si3N4 resulted in the β′-SiAlON, and full densification was prohibited because no other sintering additives were used. Relative densities ranging from 50%–90% were adjusted with the z-value and sintering temperature. The results of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses indicated that single-phase β′-SiAlON free from a grain boundary glassy phase could be obtained. Both grain and pore sizes increased with increasing z-value. Low z-value resulted in a relatively high flexural strength.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 237 (Apr. 2003), p. 233-238 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...