Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In this work, 800 ppm of Zr4+ dopants were added to Al2O3-5 vol% SiC particle composite. Zr4+ doping led to a weak Al2O3 grain-boundary bonding so that the fracture mode changed from transgranular in undoped composite to intergranular in Zr4+-doped composite. The fracture mode change increased the fracture toughness of the composite. Transmission electron microscopy and energy-dispersive spectroscopy examinations revealed that the weak grain-boundary bonding in the doped composite was caused by the segregation of Zr4+ and Si4+ ions at the Al2O3 grain boundary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Porous ZrO2 ceramics were fabricated by compacting a fine ZrO2 powder, followed by pressureless sintering. Two unidirectional pressures of 30 and 75 MPa were used to prepare the green compacts. The strength and the fracture toughness of porous ZrO2 specimens sintered from the compacts prepared by 75 MPa were substantially higher than those by 30 MPa, especially for the specimens with low porosity. However, the corresponding Young's moduli were identical. This caused the strain to failure of these porous bodies to increase significantly with increasing compaction pressure. Microstructural analyses showed that a number of voids and small flaws existed in the green compacts prepared by the lower pressure, due to the agglomeration of fine ZrO2 grains. It was revealed that the ZrO2 agglomeration resulted in a localized nonuniform shrinkage and degraded the mechanical properties of porous ZrO2 ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Using the water-quenching technique, the thermal shock behavior of porous silicon carbide (SiC) ceramics was evaluated as a function of quenching temperature, quenching cycles, and specimen thickness. It is shown that the residual strength of the quenched specimens decreases gradually with increases in the quenching temperature and specimen thickness. Moreover, it was found that the fracture strength of the quenched specimens was not affected by the increase of quenching cycles. This suggests a potential advantage of porous SiC ceramics for cyclic thermal-shock applications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Porous silicon nitride with macroscopically aligned channels was synthesized using a freeze-drying process. Freezing of a water-based slurry of silicon nitride was done while unidirectionally controlling the growth direction of the ice. Pores were generated subsequently by sublimation of the columnar ice during freeze-drying. By sintering this green body, a porous silicon nitride with high porosity (over 50%) was obtained and its porosity was controllable by the slurry concentration. The porous Si3N4 had a unique microstructure, where macroscopically aligned open pores contained fibrous grains protruding from the internal walls of the Si3N4 matrix. It is hypothesized that vapor/solid phase reactions were important to the formation mechanism of the fibrous grains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Porous silicon carbide (SiC) ceramics were fabricated by an oxidation-bonding process in which the powder compacts are heated in air so that SiC particles are bonded to each other by oxidation-derived SiO2 glass. Because of the crystallization of amorphous SiO2 glass into cristobalite during sintering, the fracture strength of oxidation-bonded SiC ceramics can be retained to a relatively high level at elevated temperatures. It has been shown that the mechanical strength is strongly affected by particle size. When 0.6 μm SiC powders were used, a high strength of 185 MPa was achieved at a porosity of ∼31%. Moreover, oxidation-bonded SiC ceramics were observed to exhibit an excellent oxidation resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 7389-7393 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of image potential due to dielectric mismatch on electronic and shallow donor impurity states in quasi-one-dimensional GaAs-Ga1−xAlxAs quantum-well wires with rectangular cross section for both finite barrier and infinitely high barrier are investigated. The results have shown that, when the image potential is included, the variations in electronic energy level and impurity binding energy are considerable, especially when the cross-section dimensions of the quantum wire become small. The results also showed that the effects of the impurity ion image potential on impurity binding energy are much larger than those of electron image potential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A ZrB2–SiC composite was prepared from a mixture of zirconium, silicon, and B4C via reactive hot pressing. The three-point bending strength was 506 ± 43 MPa, and the fracture toughness was 4.0 MPa·m1/2. The microstructure of the composite was observed via scanning electron microscopy; the in-situ-formed ZrB2 and SiC were found in agglomerates with a size that was in the particle-size ranges of the zirconium and silicon starting powders, respectively. A model of the microstructure formation mechanism of the composite was proposed, to explain the features of the phase distributions. It is considered that, in the reactive hot-pressing process, the B and C atoms in B4C will diffuse into the Zr and Si sites and form ZrB2 and SiC in situ, respectively. Because the diffusion of Zr and Si atoms is slow, the microstructure (phase distributions) of the obtained composite shows the features of the zirconium and silicon starting powders.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Al2O3-based porous ceramics with high surface areas were fabricated by adding Al(OH)3 to the starting powder, followed by pressureless sintering at temperatures 〉1100°C. Three types of starting powders were used in the present study: pure α-Al2O3, α-Al2O3+ Al(OH)3, and α-Al2O3+ ZrO2+ Al(OH)3. The addition of Al(OH)3 considerably increased the surface area of the porous Al2O3, and the addition of ZrO2 further increased the surface area; a surface area as high as 36.39 m2/g was obtained, and the high surface area was retained at higher temperature. The pore size distribution of the specimens with high surface area was bimodal, with one peak at ∼100 nm and the other, which contributed most of the surface area, at ∼10 nm. X-ray analysis showed that in the sample with the fine pores and high surface area, there was θ-Al2O3 phase produced by the decomposition of Al(OH)3, presumably because the phase transformation of θ-Al2O3 to α-Al2O3 was incomplete after low-temperature sintering. Moreover, the porous Al2O3 with high surface area retained superior mechanical properties, attributed to the good sinterability of the fine α-Al2O3 powder used in the present study. The sintered specimens could be large and designed to any shape, because pressureless sintering was used for fabrication. The present approach provides a new way of fabricating porous Al2O3 ceramics that could be widely used as catalyst supports in industry, especially for high-temperature catalysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Flexure creep and creep-recovery behavior were investigated for monolithic Al2O3 and 10-vol%-SiC-particle-reinforced Al2O3-matrix composites in an air atmosphere at temperatures of 1160°-1400°C. Two types of SiC particles were used: one has an average size of 2.7 µm and has an amount of SiO2 impurities per unit surface area that is one order of magnitude higher than the other, which has an average size of 0.6 µm. Compared to the creep behavior of monolithic Al2O3, the strain rate of the composites with the 0.6 µm SiC particles (denoted here as S-10) did not decrease; the composites with the 2.7 µm SiC particles (denoted here as L-10) exhibited excellent creep resistance. This difference was related to the microstructural features and the oxidation behavior of the composites: the Al2O3 grains in S-10 were mainly equiaxed, only ∼10% of the Al2O3 grains were elongated, and most of the SiC particles that resided at the grain boundaries or at triple-grain junctions were oxidized during creep, whereas the Al2O3 grains in L-10 were mostly irregularly shaped and elongated and most of the SiC particles were entrapped in the Al2O3 matrix grains, which prevented the oxidation of the SiC particles. These different microstructural features were associated with different amounts of SiO2 impurity content per unit surface area on the SiC particle surfaces. In addition, the monolithic Al2O3 showed no anelastic recovery when the load was removed; however, the composites exhibited significant anelastic recovery, especially for L-10. This phenomenon was attributed to the elongated grain morphology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The mechanical properties of Al2O3-based porous ceramics fabricated from pure Al2O3 powder and the mixtures with Al(OH)3 were investigated. The fracture strength of the porous Al2O3 specimens sintered from the mixture was substantially higher than that of the pure Al2O3 sintered specimens because of strong grain bonding that resulted from the fine Al2O3 grains produced by the decomposition of Al(OH)3. However, the elastic modulus of the porous Al2O3 specimens did not increase with the incorporation of Al(OH)3, so that the strain to failure of the porous Al2O3 ceramics increased considerably, especially in the specimens with high porosity, because of the unique pore structures related to the large original Al(OH)3 particles. Fracture toughness also increased with the addition of Al(OH)3 in the specimens with higher porosity. However, fracture toughness did not improve in the specimens with lower porosity because of the fracture-mode transition from intergranular, at higher porosity, to transgranular, at lower porosity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...