Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemical reviews 93 (1993), S. 2603-2621 
    ISSN: 1520-6890
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 4477-4478 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The electronic spectrum of N2+–He has been measured in the region corresponding to the N2+ B 2Σ+u←X 2Σ+g origin transition. The spectrum was recorded by photoexciting a mass selected beam of N2+–He ions and detecting N2+ fragments. A likely process for the fragmentation involves fluorescence to a vibrationally excited level of the ground electronic state followed by vibrational predissociation. The observed spectrum exhibits well resolved discrete structure and bears a remarkable resemblance to a cold N2+ spectrum suggesting that the potential between the N2+ ion and helium atom in both the X and B electronic states, has at most only a small barrier to internal rotation. Measurement of the shift of N2+–He transitions with respect to the corresponding N2+ lines indicates that the binding energy of the helium atom to the N2+ ion is almost the same in both the B and X electronic states.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 824-832 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Rotationally resolved mid-infrared spectra of the 35Cl−–H2 and 35Cl−–D2 anion complexes are measured in the regions associated with the H2 and D2 stretch vibrations. The 35Cl−–H2 spectrum contains a single Σ–Σ transition assigned to the more abundant ortho H2 containing species. The corresponding 35Cl−–D2 spectrum consists of two overlapping Σ–Σ transitions whose origins are separated by 0.24 cm−1, and which are due to absorptions by complexes containing para and ortho D2. The spectra are consistent with linear equilibrium structures for Cl−–H2 and Cl−–D2, although zero-point bending vibrational excursions are expected to be substantial. Ground state vibrationally averaged intermolecular separations between Cl− and the diatomic center-of-mass are deduced to be 3.195±0.003 Å (35Cl−–H2) and 3.159±0.002 Å (35Cl−–D2). Vibrational excitation of the diatomic core profoundly affects the intermolecular interaction and leads to contractions of 0.118 Å (35Cl−–H2) and 0.078 Å (35Cl−–D2) in the vibrationally averaged intermolecular separations. Effective one-dimensional radial potential energy curves are developed. Their form near the equilibrium separation is determined by Rydberg–Klein–Rees inversion of the spectroscopic data, and at longer ranges by averaging the dominant long range electrostatic and induction potentials over the angular motion of the atom–diatomic system. On the basis of these potentials the dissociation energies for 35Cl−–H2(o), 35Cl−–D2(p), and 35Cl−–D2(o) are estimated as 488, 499, and 559 cm−1. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 3256-3262 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Midinfrared spectra of the 81Br−-H2 and I−-H2 anion complexes are measured in the H-H stretch region by monitoring the production of halide anion photofragments. The spectra, which are assigned to complexes containing ortho H2, exhibit rotationally resolved ∑-∑ bands whose origins are redshifted from the molecular hydrogen Q1(1) transition by 110.8 cm−1 (Br−-H2) and 74.1 cm−1 (I−-H2). The complexes are deduced to possess linear equilibrium structures, with vibrationally averaged intermolecular separations between the halide anion and H2 center of mass of 3.461 Å (Br−-H2) and 3.851 Å (I−-H2). Vibrational excitation of the H2 subunit causes the intermolecular bond to stiffen and contract by 0.115 Å (Br−-H2) and 0.112 Å (I−-H2). Rydberg–Klein–Rees inversion of the spectroscopic data is used to generate effective radial potential energy curves near the potential minimum that are joined to long-range potential energy curves describing the interaction between an H2 molecule and a point negative charge. From these curves the dissociation energies of Br−-H2 and I−-H2 with respect to isolated H2 (j=1) and halide fragments are estimated as 365 and 253 cm−1, respectively. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 6394-6400 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The midinfrared spectrum of the 79Br−−D2 anion complex is measured in the D2 stretch region by monitoring the production of Br− photofragments in a tandem mass spectrometer. The rotationally resolved spectrum comprises two overlapping Σ−Σ subbands, red-shifted by (approximate)85 cm−1 from the free D2 vibrational frequency. These subbands are assigned to absorptions by Br−−D2 complexes containing para and ortho forms of the D2 molecule. The Br−−D2 complex is deduced to possess a linear equilibrium geometry, although the zero-point bending excursion is expected to be substantial. The rotational constants are consistent with vibrationally averaged intermolecular separations between the Br− anion and D2 center of mass of 3.414(4) Å for Br−−D2(p) and 3.413(1) Å for Br−−D2(o). The intermolecular bond contracts by 0.076 Å following vibrational excitation of the D2 diatomic molecule. Effective one-dimensional radial potential energy curves are developed through Rydberg–Klein–Rees inversion of the spectroscopic data and consideration of the long-range electrostatic and induction interaction between the D2 molecule and a point charge. On the basis of these potential energy curves the binding energies of Br−−D2(p) and Br−−D2(o) are estimated as 364 and 418 cm−1, respectively. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 1075-1080 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An infrared vibrational predissociation spectrum of the 79Br−–C2H2 anion complex has been recorded over the 2800–3400 cm−1 range. Bands are observed that correspond to excitation of bound and free C–H stretches of an acetylene molecule engaged in a linear hydrogen bond with Br−. The band associated with the bound C–H stretch displays rotationally resolved substructure. Lower J transitions are absent from the predissociation spectrum, indicating that the upper levels lie below the dissociation threshold. Analysis leads to constants for lower and upper states: v0=2981.28, B″=0.048 84, ΔB=9.3×10−4 cm−1, and a minimum J′=28 for dissociation. The rotational constants correspond to vibrationally averaged separation between Br− and the C2H2 center of mass of 4.11 Å in the ground state and 4.07 Å in the v3 state. A dissociation energy for Br−–C2H2 of 3020±3 cm−1 is estimated from the energy of the lowest dissociating level. The spectroscopically derived data are corroborated by ab initio calculations conducted at the MP2/aug-cc-pVTZ level. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 10154-10157 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The mid-infrared spectrum of the 37Cl−–H2 anion complex has been measured over the 3990–4050 cm−1 range (H–H stretch region) using infrared vibrational predissociation spectroscopy. The spectrum features a well resolved Σ–Σ transition red shifted by 156 cm−1 from the free H2 molecule stretch. Analysis of the P and R branch line positions using a linear molecule energy level expression yields ν0=4004.77±0.08 cm−1, B″=0.853±0.002 cm−1, D″=(9.3±1.0)×10−5cm−1, B′=0.919±0.002 cm−1, and D′=(9.0±1.0)×10−5 cm−1. The Cl−–H2 complex appears to have a linear equilibrium structure, with a vibrationally averaged separation of 3.19 Å between the Cl− and the H2 center-of-mass. Vibrational excitation of the H–H stretch induces a 0.12 Å contraction in the intermolecular bond. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 5152-5164 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A combined experimental and theoretical study of the structural properties of the H2–HCO+ ion-neutral complex has been undertaken. Infrared vibrational predissociation spectra of mass selected H2–HCO+ complexes in the 2500–4200 cm−1 range display several vibrational bands, the most intense arising from excitation of the C–H and H2 stretch vibrations. The latter exhibits resolved rotational structure, being composed of Σ–Σ and Π–Π subbands as expected for a parallel transition of complex with a T-shaped minimum energy geometry. The determined ground state molecular constants are in good agreement with ones obtained by ab initio calculations conducted at the QCISD(T)/6–311G(2df,2pd) level. The complex is composed of largely undistorted H2 and HCO+ subunits, has a T-shaped minimum energy geometry with an H2...HCO+ intermolecular bondlength of approximately 1.75 A(ring). Broadening of the higher J lines in the P and R branches of the Π–Π subband is proposed to be due to asymmetry type doubling, the magnitude of which is consistent with the calculated barrier to H2 internal rotation. The lower J lines in the Σ–Σ and Π–Π subbands have widths of 0.06 cm−1, around three times larger than the laser bandwidth, corresponding to a decay time of ≈90 ps for the upper level. The absence of discernible rotational structure in the ν2 band suggests that it has predissociation lifetime of less than 1 ps. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 4156-4164 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Spectra of 14N+2–20Ne, 14N+2–22Ne, and 15N+2–20Ne have been recorded in the region of the B 2Σ+u←X 2Σ+g origin transition of N+2. Measurements are made by mass selecting cooled ionic complexes and photodissociating them whilst monitoring the N+2 fragment ion intensity as the laser wavelength is scanned. Various bands are assigned to transitions involving the stretching and bending motions of the Ne...Ne+2 bond with their structure and spacings consistent with transitions between quasilinear geometries in the X and the B states. Spectra of complexes with up to eight neon atoms attached to a 14N+2 core have also been measured. Evidence from shifts of the band origins and analysis of the vibrational frequencies of N+2–Ne2 and N+2–Ne3 suggest a structure where the Ne ligands are sited at one end of the N+2 chromophore.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4749-4755 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The electronic spectrum of N+2–Ne has been measured in the region corresponding to the B 2∑+u←X 2∑+g origin and 1–0 transitions of N+2. Spectra were obtained by irradiating a mass selected population of N+2–Ne and monitoring the production of N+2 as a function of wavelength. Low temperature N+2–Ne spectra exhibit several well resolved bands. From the shift of the N+2–Ne origin with respect to that of free N+2 it is apparent that the complex dissociation energy D0 is 146.5 cm−1 greater in the B state than the X state. Pronounced changes in the complex's spectrum occur as the effective temperature is increased. The hottest spectra resemble a broadened and truncated N+2 spectrum. The breaking off at the high energy end of the spectrum at elevated temperatures allows us to establish a rough ground-state dissociation energy of 300 cm−1. Other conclusions resulting from this work are that the equilibrium geometry of the N+2–Ne molecule is probably linear in X and B electronic states, that the ΔG1/2 for the low frequency stretch in the B state is 104 cm−1, and that the N–N stretching motion is affected only very weakly by the presence of the Ne atom.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...