Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Methodology and computing in applied probability 1 (1999), S. 191-210 
    ISSN: 1387-5841
    Keywords: two queues ; many-server ; server reservation ; impatience ; occupancy distribution ; waiting time distribution ; approximate system ; M(n)/M(n)/s+GI ; call center application
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We consider an s-server priority system with a protected and an unprotected queue. The arrival rates at the queues and the service rate may depend on the number n of customers being in service or in the protected queue, but the service rate is assumed to be constant for n 〉 s. As soon as any server is idle, a customer from the protected queue will be served according to the FCFS discipline. However, the customers in the protected queue are impatient. If the offered waiting time exceeds a random maximal waiting time I, then the customer leaves the protected queue after time I. If I is less than a given deterministic time, then he leaves the system, else he will be transferred by the system to the unprotected queue. The service of a customer from the unprotected queue will be started if the protected queue is empty and more than a given number of servers become idle. The model is a generalization of the many-server queue with impatient customers. The global balance conditions seem to have no explicit solution. However, the balance conditions for the density of the stationary state process for the subsystem of customers being in service or in the protected queue can be solved. This yields the stability conditions and the probabilities that precisely n customers are in service or in the protected queue. For obtaining performance measures for the unprotected queue, a system approximation based on fitting impatience intensities is constructed. The results are applied to the performance analysis of a call center with an integrated voice-mail-server.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Queueing systems 17 (1994), S. 275-315 
    ISSN: 1572-9443
    Keywords: Fluid flow approximation ; superposition ; Markov modulated rate processes ; counting process ; bursty traffic ; asymptotical normality ; complex integration ; numerical integration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Fluid flow approximations are widely used for approximating models of communication systems where packet arrival streams are generated in a regular manner over certain intervals (constant rate). The appropriate mathematical model for describing those bursty arrival streams in the fluid flow framework are the well-known Markov modulated rate processes (MMRP). The paper deals with the distribution of the numberN(t) of packets in the interval [0,t] of MMRP. For two-state MMRPs and their superpositions we derive formulas for the distribution ofN(t) and its density. Further we give asymptotic results. The presented numerical results and simulation studies illustrate the goodness of the fluid flow approximation and show that the proposed numerical algorithms work well even in the case of multiplexing a large number of burst silence sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Queueing systems 6 (1990), S. 287-310 
    ISSN: 1572-9443
    Keywords: Single server queue ; discrete time ; batch arrivals ; spaced packets ; embedded Markov chain ; functional equation ; stationary mean queue length ; limiting results
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract We study a discrete-time single-server queue where batches of messages arrive. Each message consists of a geometrically distributed number of packets which do not arrive at the same instant and which require a time unit as service time. We consider the cases of constant spacing and geometrically distributed (random) spacing between consecutive packets of a message. For the probability generating function of the stationary distribution of the embedded Markov chain we derive in both cases a functional equation which involves a boundary function. The stationary mean number of packets in the system can be computed via this boundary function without solving the functional equation. In case of constant (random) spacing the boundary function can be determined by solving a finite-dimensional (an infinite-dimensional) system of linear equations numerically. For Poisson- and Bernoulli-distributed arrivals of messages numerical results are presented. Further, limiting results are derived.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Queueing systems 32 (1999), S. 363-381 
    ISSN: 1572-9443
    Keywords: head-of-the-line processor-sharing ; many queues ; permanent customers ; marked point process ; stability condition ; Loynes’ construction ; ergodicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract We consider a single server system consisting of n queues with different types of customers and k permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). By means of Loynes’ monotonicity method a stationary work load process is constructed and using sample path analysis general stability conditions are derived. They allow to decide which queues are stable and, moreover, to compute the fraction of processor capacity devoted to the permanent customers. In case of a stable system the constructed stationary state process is the only one and for any initial state the system converges pathwise to the steady state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical methods of operations research 47 (1998), S. 181-220 
    ISSN: 1432-5217
    Keywords: head-of-the-line processor-sharing ; many queues ; permanent customers ; sojourn times ; pseudo conservation law ; Riemann-Hilbert problem ; Dirichlet problem
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Economics
    Notes: Abstract We consider a single server system consisting of e queues with different types of customers (Poisson streams) andk permanent customers. The permanent customers and those at the head of the queues are served in processor-sharing by the service facility (head-of-the-line processor-sharing). The stability condition and a pseudo work conservation law will be given for arbitrary service time distributions; for exponential service times a pseudo conservation law for the mean sojourn tunes can be derived. In case of two queues and exponential service times, the generating function of the stationary occupancy distribution satisfies a functional equation being a Riemann-Hilbert problem which can be reduced to a Dirichlet problem for a circle. The solution yields the mean sojourn times as an elliptic integral, which can be computed numerically very efficiently. In case ofn ≥ 2 a numerical algorithm for computing the performance measures is presented, which is efficient forn ≤ 3. Since forn ≥ 4 an exact analytical or/and numerical treatment is too complex a heuristic approximation for the mean sojourn times of the different types of customers is given, which in case of a (completely) symmetric system is exact. The numerical and simulation results show that, over a wide range of parameters, the approximation works well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-26
    Description: The paper is concerned with the analysis of an $s$ server queueing system in which the calls become impatient and leave the system if their waiting time exceeds their own patience. The individual patience times are assumed to be i.i.d.\ and arbitrary distributed. The arrival and service rate may depend on the number of calls in the system and in service, respectively. For this system, denoted by $M(n)/M(m)/s+GI$, where $m=\min(n,s)$ is the number of busy servers in the system, we derive a system of integral equations for the vector of the residual patience times of the waiting calls and their original maximal patience times. By solving these equations explicitly we get the stability condition and, for the steady state of the system, the occupancy distribution and various waiting time distributions. As an application of the \mbox{$M(n)/M(m)/s+GI$} system we give a performance analysis of an Automatic Call Distributor system (ACD system) of finite capacity with outbound calls and impatient inbound calls, especially in case of patience times being the minimum of constant and exponentially distributed times.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-26
    Description: We consider a $s$-server system with two FCFS queues, where the arrival rates at the queues and the service rate may depend on the number $n$ of customers being in service or in the first queue, but the service rate is assumed to be constant for $n〉s$. The customers in the first queue are impatient. If the offered waiting time exceeds a random maximal waiting time $I$, then the customer leaves the first queue after time $I$. If $I$ is less than a given deterministic time then he leaves the system else he transits to the end of the second queue. The customers in the first queue have priority. The service of a customer from the second queue will be started if the first queue is empty and more than a given number of servers become idle. For the model being a generalization of the $M(n)/M(n)/s\!+\!GI$ system balance conditions for the density of the stationary state process are derived yielding the stability conditions and the probabilities that precisely $n$ customers are in service or in the first queue. For obtaining performance measures for the second queue a system approximation basing on fitting impatience intensities is constructed. The results are applied to the performance analysis of a call center with an integrated voice-mail-server. For an important special case a stochastic decomposition is derived illuminating the connection to the dynamics of the $M(n)/M(n)/s\!+\!GI$ system.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-26
    Description: In this paper for the $M(n)/M(n)/s+GI$ system, i.e.\ for a $s$-server queueing system where the calls in the queue may leave the system due to impatience, we present new asymptotic results for the intensities of calls leaving the system due to impatience and a Markovian system approximation where these results are applied. Furthermore, we present a new proof for the formulae of the conditional density of the virtual waiting time distributions, recently given by Movaghar for the less general $M(n)/M/s+GI$ system. Also we obtain new explicit expressions for refined virtual waiting time characteristics as a byproduct.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...