Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Ionosphere (particle acceleration; plasma waves and instabilities) ; Space plasma physics (transport processes)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We have determined the MLT distribution and KpKP dependence of the ion upflow and downflow of the thermal bulk oxygen ion population based on a data analysis using the EISCAT VHF radar CP-7 data obtained at Tromsø during the period between 1990 and 1996: (1) both ion upflow and downflow events can be observed at any local time (MLT), irrespective of dayside and nightside, and under any magnetic disturbance level, irrespective of quiet and disturbed levels; (2) these upflow and downflow events are more frequently observed in the nightside than in the dayside; (3) the upflow events are more frequently observed than the downflow events at any local time except midnight and at any KP level and the difference of the occurrence frequencies between the upflow and downflow events is smaller around midnight; and (4) the occurrence frequencies of both the ion upflow and downflow events appear to increase with increasing KP level, while the occurrence frequency of the downflow appears to stop increasing at some KP level
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Keywords: Ionosphere ; (Ionosphere–magnetosphere interactions) ; Magnetospheric physics ; Magnetosphere – ionosphere interactions ; MHD waves and instabilities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0992-7689
    Keywords: Ionosphere (Ionosphere–atmosphere interactions) ; Meteorology and atmospheric dynamics (thermospheric dynamics; waves and tides)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The field-aligned neutral oscillations in the F-region (altitudes between 165 and 275 km) were compared using data obtained simultaneously with two independent instruments: the European Incoherent Scatter (EISCAT) UHF radar and a scanning Fabry-Perot interferometer (FPI). During the night of February 8, 1997, simultaneous observations with these instruments were conducted at Tromsø, Norway. Theoretically, the field-aligned neutral wind velocity can be obtained from the field-aligned ion velocity and by diffusion and ambipolar diffusion velocities. We thus derived field-aligned neutral wind velocities from the plasma velocities in EISCAT radar data. They were compared with those observed with the FPI (λ=630.0 nm), which are assumed to be weighted height averages of the actual neutral wind. The weighting function is the normalized height dependent emission rate. We used two model weighting functions to derive the neutral wind from EISCAT data. One was that the neutral wind velocity observed with the FPI is velocity integrated over the entire emission layer and multiplied by the theoretical normalized emission rate. The other was that the neutral wind velocity observed with the FPI corresponds to the velocity only around an altitude where the emission rate has a peak. Differences between the two methods were identified, but not completely clarified. However, the neutral wind velocities from both instruments had peak-to-peak correspondences at oscillation periods of about 10–40 min, shorter than that for the momentum transfer from ions to neutrals, but longer than from neutrals to ions. The synchronizing motions in the neutral wind velocities suggest that the momentum transfer from neutrals to ions was thought to be dominant for the observed field-aligned oscillations rather than the transfer from ions to neutrals. It is concluded that during the observation, the plasma oscillations observed with the EISCAT radar at different altitudes in the F-region are thought to be due to the motion of neutrals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0992-7689
    Keywords: Ionosphere (auroral ionosphere; plasma waves and instabilities) ; Space plasma physics (kinetic and MHD theory)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In usual incoherent scatter data analysis, the plasma distribution function is assumed to be Maxwellian. In space plasmas, however, distribution functions with a high energy tail which can be well modeled by a generalized Lorentzian distribution function with spectral index kappa (kappa distribution) have been observed. We have theoretically calculated incoherent scatter spectra for a plasma that consists of electrons with kappa distribution function and ions with Maxwellian neglecting the effects of the magnetic field and collisions. The ion line spectra have a double-humped shape similar to those from a Maxwellian plasma. The electron temperatures are underestimated, however, by up to 40% when interpreted assuming Maxwellian distribution. Ion temperatures and electron densities are affected little. Accordingly, actual electron temperatures might be underestimated when an energy input maintaining a high energy tail exists. We have also calculated plasma lines with the kappa distribution function. They are enhanced in total strength, and the peak frequencies appear to be slightly shifted to the transmitter frequency compared to the peak frequencies for a Maxwellian distribution. The damping rate depends on the electron temperature. For lower electron temperatures, plasma lines for electrons with a κ distribution function are more strongly damped than for a Maxwellian distribution. For higher electron temperatures, however, they have a relatively sharp peak.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 18 (2000), S. 1224-1230 
    ISSN: 0992-7689
    Keywords: Ionosphere (auroral ionosphere; plasma waves and instabilities; instruments and techniques)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The k-dependence of the Reviced power in high signal-to-noise ratio (SNR) conditions, occurring for naturally enhanced ion-acoustic lines (NEIALs) and for real satellites, is investigated by using the EISCAT Svalbard Radar (ESR), where the data are recorded in eight separate channels using different frequencies. For the real satellites we find large variations of the relative powers from event to event, which is probably due to a different number of pulses catching the satellite over the integration period. However, the large power difference remains unexpected in one case. Over short time scale (≤10 s) the relative power difference seems to be highly stable. For most NEIAL events the differences between channels are within noise level. In a few cases variations of the relative power well above both the estimated and expected 1-sigma level occur over a signal preintegrated profile. We thus suggest that the frequency dependence of the power in NEIAL events has its origin in the scattering medium itself as the most plausible explanation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...