Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Agricultural Systems 21 (1986), S. 267-277 
    ISSN: 0308-521X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Agricultural Systems 33 (1990), S. 153-171 
    ISSN: 0308-521X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: available soil water ; extraction pattern ; maize ; sorghum ; soya bean ; sunflower ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The estimation of soil water reserves is essential for irrigation management. The usual way of calculating these reserves, held between the soil moisture content at field capacity and the classical limit of −1.5 MPa considered as the lower limit of available water, over the rooting depth of the crop, does not correspond with the real behaviour of crops as regards their ability to extract soil water and should be only considered as the apparent available water (AAW). Measurements of moisture profiles made using a neutron probe soil moisture meter from 1970 until 1991 on unirrigated crops at the INRA Agronomy Station at Toulouse-Auzeville, France, on a deep silty clay soil with a high water holding capacity have enabled us to define the water extraction capacities of maize ( Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L. Moench), soya bean (Glycine max L. Merr.), and winter wheat (Triticum aestivum L.). The results show, not only that all the crops can extract soil water from beyond −1.5 MPa in the surface layers to varying degrees and depths, depending on the crop, but also that deeper down, AAW is not fully used, as the moisture profile gradually returns to field capacity. Of the five crops studied, maize extracts the most water from the top 0.5 m, removing 150% of AAW. This amount falls rapidly lower down, reaching nil at 1.6 m. Conversely sunflower extracts less near the surface, but uses all AAW up to 1.2 m, and still extracts 85% of AAW at 1.6 m. Sorghum is somewhat comparable to sunflower, but with a lower use over the entire profile. Soya bean exhibits strong extraction to 1.0 m, and then much less at depth. As to wheat, its extraction capability is quite high near the surface, and then falls steadily with depth where it is still 30% of AAW at 1.6 m. Soil moisture measurements realised on a bare soil during several successive years were used to fix the maximum soil evaporation and to suggest the contribution of crops in soil water depletion from uppermost layers. The water extraction capacities have been modelled and introduced into the model EPICphase, a modified version of the model EPIC, adapted for irrigation management. Four parameters have been introduced to simulate: (1) the rooting pattern of the crop (parameter α), (2) the degree of involvement of deep layers (parameter p), (3) the fraction of AAW beyond which crop transpiration is affected (parameter t) and (4) the intensity of extraction beyond the limit of −1.5 MPa as a function of soil depth (parameter d). Calibrated on the basis of the driest year since 1970 for each crop, the model was then validated under unirrigated conditions, and then tested on irrigated maize plots. Under unirrigated conditions, the simulations correctly reproduced the water extraction by the five crops, both in an extremely dry year and in a wet year. The observed differences between simulations and observations were found mostly at about 0.1 m depth, and were due to lack of precision of moisture measurements with the neutron probe. From 0.2 to 0.6 m the simulations have a tendency to overestimate the extraction. These differences are explained by water fluxes which are especially high in these layers because of the processes of evaporation from the soil and plant transpiration, which are difficult to simulate with precision. Below 0.6 m, a more stable zone where water movements are of minor importance, the simulations are very precise. For irrigated maize, the results show a very good fit between simulation and measurement, indicating that these water extraction capacity figures could be used for irrigation management provided that the rules for exploitation of the water reserves are well established.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...