Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Effects of deficient (20mmol m−3) and sufficient (1000 mmol m−3) magnesium (Mg) supply and of varied light intensity (100 μmol m−2 s−1 to 580 μmol m−2 s−1) on paraquat-dependent chlorophyll destruction in bean (Phaseolus vulgaris) plants grown in nutrient solution were studied over a 12-d period using leaf discs or intact primary leaves. Treatment of leaf discs with 10mmol m 3 paraquat for 15h caused severe chlorophyll loss, especially with increasing light intensity. This chlorophyll destruction by paraquat was very much higher in Mg-sufficient than Mg-deficient leaves. The occurrence of paraquat resistance in Mg deficient leaves was already apparent after 6d growth in nutrient solution, i.e. before any decrease in chlorophyll or growth by Mg deficiency was evident. Also, following foliar application of paraquat (10–140 mmol m−3) to intact plants, Mg-deficient plants were much more resistant to paraquat, even following longer exposure duration (72 h) and four to 14 times higher paraquat concentrations than those received by Mg sufficient plants. From experiments where exogenous scavengers of superoxide radical (O2.-), hydroxyl radical (OH·) and singlet oxygen (1O2) were applied to leaf discs, it appears that O2.-, and partly, OH· are the main O2 species which contribute to chlorophyll destruction by paraquat. The results demonstrate that Mg-deficient bean plants become highly resistant to O2.--mediated and light-induced paraquat injury. The mode of this paraquat resistance is attributed to well-known stimulative effects of Mg deficiency on O2.- and H2O2 scavenging enzymes and antioxidants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: bread wheat ; calcareous soil ; Central Anatolia ; durum wheat ; genetic differences ; zinc deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a soil and plant survey, and in field and greenhouse experiments the nutritional status of wheat plants was evaluated for Zn, Fe, Mn and Cu in Central Anatolia, a semi-arid region and the major wheat growing area of Turkey. All 76 soils sampled in Central Anatolia were highly alkaline with an average pH of 7. 9. More than 90% of soils contained less than 0.5 mg kg-1 DTPA-extractable Zn, which is widely considered to be the critical deficiency concentration of Zn for plants grown on calcareous soils. About 25% of soils contained less than 2.5 mg kg-1 DTPA-extractable Fe which is considered to be the critical deficiency concentration of Fe for plants. The concentrations of DTPA-extractable Mn and Cu were in the sufficiency range. Also the Zn concentrations in leaves were very low. More than 80% of the 136 leaf samples contained less than 10 mg Zn kg−1. By contrast, concentrations of Fe, Mn and Cu in leaves were in the sufficient range. In the field experiments at six locations, application of 23 kg Zn ha-1 increased grain yield in all locations. Relative increases in grain yield resulting from Zn application ranged between 5% to 554% with a mean of 43%. Significant increases in grain yield (more than 31%) as a result of Zn application were found for the locations where soils contained less than 0.15 mg kg-1 DTPA-extractable Zn. In pot experirnents with two bread (Triticum aestivum, cvs. Gerek-79 and Kirac-66) and two durum wheats (Triticum durum, cvs. Kiziltan-91 and Kunduru-1149), an application of 10 mg Zn kg-1 soil enhanced shoot dry matter production by about 3.5-fold in soils containing 0.11 mg kg-1 and 0.15 mg kg-1 DTPA-extractable Zn. Results from both field observations and greenhouse experiments showed that durum wheats were more susceptible to Zn deficiency than the bread wheats. On Zn deficient soils, durum wheats as compared to bread wheats developed deficiency symptoms in shoots earlier and to a greater extent, and had lower Zn concentration in shoot tissue and lower Zn content per shoot than the bread wheats. The results presented in this paper demonstrate that (i) Zn deficiency is a critical nutritional problem in Central Anatolia substantially limiting wheat production, (ii) durum wheats possess higher sensitivity to Zn deficient conditions than bread wheats, and (iii) wheat plants grown in calcareous soils containing less than 0.2 mg kg-1 DTPA-extractable Zn significantly respond to soil Zn applications. The results also indicate that low levels of Zn in soils and plant materials (i.e. grains) could be a major contributing factor for widespread occurrence of Zn deficiency in children in Turkey, whose diets are dominated by cereal-based foods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: barley ; iron deficiency ; light intensity ; phytosiderophore ; wheat ; zinc deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of varied light intensity (50 – 600 μmol m-2 s-1) on the rate of phytosiderophore release was studied under zinc (Zn) deficiency using a bread (Triticum aestivum L. cv. Aroona) and a durum wheat cultivar (Triticum durum Desf. cv. Durati) differing in zinc (Zn) efficiency and under iron (Fe) deficiency using a barley cultivar (Hordeum vulgare L. Europe). Plants were grown under controlled environmental conditions in nutrient solution for 15 days (wheat plants) or 11 days (barley plants). Phytosiderophore release was determined by measuring capacity of root exudates to mobilize copper (Cu) from a Cu-loaded resin. With increasing light intensity visual Zn deficiency symptoms such as whitish-brown lesions on leaf blade developed rapidly and severely in wheat, particularly in the durum cultivar Durati. In wheat plants supplied well with Zn, increases in light intensity from 100 to 600 μmol m-2 s-1 did not clearly affect the rate of phytosiderophore release. However, under Zn deficiency increases in light intensity markedly enhanced release of phytosiderophores in Zn-deficient Aroona, but not in Zn-inefficient Durati. When Fe-deficient barley cultivar Europe was grown first at 220 μmol m-2 s-1 and then exposed to 600 μmol m-2 s-1 for 24 and 48 h, the rate of release of phytosiderophores was enhanced about 4-fold and 7-fold, respectively. Transfer of Fe-deficient plants from 600 to 50 μmol m-2 s-1 for 48 h reduced the rate of release of phytosiderophores by a factor of 7. The effect of light on phytosiderophore release was similar regardless of whether the rate of phytosiderophore release was expressed per plant or per unit dry weight of roots. The results demonstrate a particular role of light intensity in phytosiderophore release from roots under both Zn and Fe deficiency. It is suggested that in the studies concerning the role of phytosiderophore release in expression of Zn or Fe efficiency among and within cereals, a special attention should be given to the light conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: genotypic differences ; rye ; triticale ; wheat ; zinc deficiency ; zinc efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field and greenhouse experiments were carried out to study the response of rye (Secale cereale L. cv. Aslim), triticale (× Triticosecale Wittmark. cv. Presto), two bread wheats (Triticum aestivum L, cvs. Bezostaja-1 and Atay-85) and two durum wheats (Triticum durum L. cvs. Kunduru-1149 and C-1252) to zinc (Zn) deficiency and Zn fertilization in severely Zn-deficient calcareus soils (DTPA-Zn=0.09 mg kg-1 soil). The first visible symptom of Zn deficiency was a reduction in shoot elongation followed by the appearance of whitish-brown necrotic patches on the leaf blades. These symptoms were either absent or only slight in rye and triticale, but occurred more rapidly and severely in wheats, particularly in durum wheats. The same was true for the decrease in shoot dry matter production and grain yield. For example, in field experiments at the milk stage, decreases in shoot dry matter production due to Zn deficiency were absent in rye, and were on average 5% in triticale, 34% in bread wheats and 70%, in durum wheats. Zinc fertilization had no effect on grain yield in rye but enhanced grain yield of the other cereals. Zinc efficiency of cereals, expressed as the ratio of yield (shoot dry matter or grain) produced under Zn deficiency compared to Zn fertilization were, on average, 99% for rye, 74% for triticale, 59% for bread wheats and 25% for durum wheats. These distinct differences among and within the cereal species in susceptibility to Zn deficiency were closely related to the total amount (content) of Zn per shoot, but not with the Zn concentrations in shoot dry matter. For example, the most Zn-efficient rye and the Zn-inefficient durum wheat cultivar C-1252 did not differ in shoot Zn concentration under Zn deficiency, but the total amount of Zn per whole shoot was approximately 6-fold higher in rye than the durum wheat. When Zn was applied, rye and triticale accumulated markedly more Zn both per whole shoot and per unit shoot dry matter in comparison to wheats. The results demonstrate an exceptionally high Zn efficiency of rye and show that among the cereals studied Zn efficiency declines in the order rye〉triticale〉bread wheat〉durum wheat. The differences in expression of Zn efficiency are possibly related to a greater capacity of efficient genotypes to acquire Zn from the soil compared to inefficient genotypes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: genotypic variation ; Secale cereale ; Triticum aestivum ; Triticum durum ; zinc efficiency ; zinc deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effect of zinc (Zn) nutritional status on uptake of inorganic 65Zn was studied in rye (Secale cereale, cv. Aslim), three bread wheat (Triticum aestivum, cvs. Dagdas, Bezostaja, BDME-10) and durum wheat (Triticum durum, cv. Kunduru-1149) cultivars grown for 13 days in nutrient solution under controlled environmental conditions. The cultivars were selected based on their response to Zn deficiency and to Zn fertilization in calcareous soils under field conditions. When grown in Zn-deficient calcareous soil in the field, the rye cultivar had the highest, and the durum wheat the lowest Zn efficiency. Among the bread wheats, BDME-10 showed higher susceptibility to Zn deficiency and Bezostaja and Dagdas were less affected by Zn deficiency. Similarly to field conditions, in nutrient solution visual Zn deficiency symptoms (i.e. necrotic lesions on leaf blade) appeared to be more severe in Kunduru-1149 and BDME-10 and less severe in rye cultivar Aslim. Under Zn deficiency, shoot concentrations of Zn were similar between all cultivars. Cultivars with adequate Zn supply did not differ in uptake and root-to-shoot translocation rate of 65Zn, but under Zn deficiency there were distinct differences; rye showed the highest rate of Zn uptake and the durum wheat the lowest. In the case of bread wheat cultivars, 65Zn uptake rate was about the same and not related to their differential Zn efficiency. Under Zn deficiency, rye had the highest rate of root-to-shoot translocation of 65Zn, while all bread and durum wheat cultivars were similar in their capacity to translocate 65Zn from roots to shoots. When Zn2+ activity in uptake solution ranged between 117 p M and 34550 pM, Zn-efficient and Zn-inefficient bread wheat genotypes were again similar in uptake and root-to-shoot translocation rate of 65Zn. The results indicate that high Zn efficiency of rye can be attributed to its greater Zn uptake capacity from soils. The inability of the durum wheat cultivar Kunduru-1149 to have a high Zn uptake capacity seems to be an important reason for its Zn inefficiency. Differential Zn efficiency between the bread wheat cultivars used in this study is not related to their capacity to take up inorganic Zn.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: Aegilops tauschii ; synthetic wheats ; Triticum monococcum ; zinc deficiency ; zinc efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of varied zinc (Zn) supply on shoot and root dry matter production, severity of Zn deficiency symptoms and Zn tissue concentrations was studied in two Triticum turgidum (BBAA) genotypes and three synthetic hexaploid wheat genotypes by growing plants in a Zn-deficient calcareous soil under greenhouse conditions with (+Zn=5 mg kg-1 soil) and without (−Zn) Zn supply. Two synthetic wheats (BBAADD) were derived from two different Aegilops tauschii (DD) accessions using same Triticum turgidum (BBAA), while one synthetic wheat (BBAAAA) was derived from Triticum turgidum (BBAA) and Triticum monococcum (AA). Visible symptoms of Zn deficiency, such as occurrence of necrotic patches on leaves and reduction in shoot elongation developed more rapidly and severely in tetraploid wheats than in synthetic hexaploid wheats. Correspondingly, decreases in shoot and root dry matter production due to Zn deficiency were higher in tetraploid wheats than in synthetic hexaploid wheats. Transfer of the DD genome from Aegilops tauschii or the AA genome from Triticum monococcum to tetraploid wheat greatly improved root and particularly shoot growth under Zn-deficient, but not under Zn-sufficient conditions. Better growth and lesser Zn deficiency symptoms in synthetic hexaploid wheats than in tetraploid wheats were not accompanied by increases in Zn concentration per unit dry weight, but related more to the total amount of Zn per shoot, especially in the case of synthetic wheats derived from Aegilops tauschii. This result indicates higher Zn uptake capacity of synthetic wheats. The results demonstrated that the genes for high Zn efficiency from Aegilops tauschii (DD) and Triticum monococcum (AA) are expressed in the synthetic hexaploid wheats. These wheat relatives can be used as valuable sources of genes for improvement of Zn efficiency in wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: cadmium (Cd) ; Cd re-translocation ; durum wheat ; Rb re-translocation ; Triticum durum ; zinc (Zn) ; Zn deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effect of varied zinc (Zn) supply (0, 0.1, 1, 5 μM) on re-translocation of radio-labeled cadmium (109Cd) and rubidium (86Rb) from mature leaf to root and other parts of shoot was studied in 11-day-old durum wheat (Triticum durum cv. C-1252) plants grown in nutrient solution under controlled environmental conditions. Application of 109Cd and 86Rb was carried out by immersing the tips (3 cm) of mature leaf in radio-labeled solutions for 10 s at three different times over a 42 h period. Differences in Zn supply for 11 days did not affect plant growth nor did it cause visual leaf symptoms, such as necrosis and chlorosis, at either the lowest or the highest Zn supply. Only at the nil Zn supply (0 μM), shoot and root dry weights tended to decrease and increase, respectively, causing a lower shoot/root dry weight ratio. Partitioning of more dry matter to roots rather than shoots, a typical phenomena for Zn-deficient plants in nutrient solution experiments, indicated existence of a mild Zn deficiency stress at the nil-Zn treatment. Irrespective of Zn supply, plants could, on average, retranslocate 3.8% and 38% of the total absorbed 109Cd and 86Rb from the treated leaf to roots and other parts of shoots within 42 h, respectively. At nil-Zn treatment, 2.8% of the total absorbed 109Cd was re-translocated from the treated leaf, particularly into roots. The highest re-translocation of 109Cd (6.5%) was found in plants supplied with 0.1 μM Zn. Increases in Zn supply from 0.1 μM reduced 109Cd re-translocation from 6.5% to 4.3% at 1 μM Zn and 1.3% at 5 μM Zn. With the exception of the nil-Zn treatment, the proportion of re-translocated 109Cd was greater in the remainder of the shoot than in the roots. Contrary to the 109Cd results, re-translocation of 86Rb was not (at 0, 0.1 and 1 μM Zn), or only slightly (at 5 μM), affected by changing Zn supply. The results indicate an inhibitory action of increased concentrations of Zn in shoot tissues on phloem-mediated Cd transport. This effect is discussed in relation to competitive inhibition of Cd loading into phloem sap by Zn.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: Cucumis sativus L. ; chlorosis ; phosphorus toxicity ; zinc deficiency ; silicon supply
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Based on results from water culture experiments with tomato and cucumber plants where severe leaf chlorosis and depression in flower and fruit formation occurred without silicon (Si) supply, Miyake and Takahashi (1978; 1983) concluded that Si is an essential mineral element for these two plant species. Using the same nutrient solution which is high in phosphorus (P) but low in zinc (Zn) we could confirm these results. Severe chlorosis occurred in cucumber when Si was omitted, and the addition of Si prevented these visual symptoms. Simultaneously the concentrations of P drastically decreased in the leaves and the proportions of water extractable Zn increased. Normal growth and absence of chlorosis were, however, also obtained without the addition of Si when either the external concentration of P was lowered or of Zn was increased. Short-term experiments revealed that Si has no direct effect on uptake or translocation of P to the shoot. According to these results, the experimental evidences so far are insufficient for the classification of Si as an essential mineral element for cucumber. Instead, Si may act as beneficial element under conditions of nutrient imbalances, for example, in P and Zn supply and corresponding P-induced Zn deficiency. The mechanism by which Si increases the physiological availability of Zn in leaf tissue is not yet clear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5036
    Keywords: addition lines ; rye ; triticale ; wheat ; zinc deficiency ; zinc genetic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. "PlutoxFakon") as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg-1 soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the 1R line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64% for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions. The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: bread wheat ; durum wheat ; genotypes ; zinc concentration ; zinc deficiency ; zinc efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Six bread wheat (Triticum aestivum cvs. Kiraç-66, Gerek-79, Aroona, ES 91-12, ES-14 and Kirkpinar) and four durum wheat (Triticum durum cvs. BDMM-19, Kunduru-1149, Kiziltan-91 and Durati) genotypes were grown under controlled environmental conditions in nutrient solution for 20 days to study the effect of varied supply of Zn (0 to 1 µM) on Zn deficiency symptoms in shoots, root and shoot dry matter production, and distribution of Zn in roots and shoots. Visual Zn deficiency symptoms, such as whitish-brown lesions on leaves, appeared rapidly and severly in durum wheats, particularly in Kiziltan-91 and Durati. Among the durum wheats, BDMM-19 was less affected by Zn deficiency, and among the bread wheats Kiraç-66, ES 91-12, Aroona and Gerek-79 were less affected than ES-14 and Kirkpinar. Under Zn deficiency, shoot dry matter production was decreased in all genotypes, but more distinctly in durum wheat genotypes. Despite severe decreases in shoot growth, root growth of all genotypes was either not affected or even increased by Zn deficiency. Correspondingly, shoot/root dry weight ratios were lower in Zn-deficient than in Zn-sufficient plants, especially in durum wheat genotypes. The distinct differences among the genotypes in sensitivity to Zn deficiency were closely related with the Zn content (Zn accumulation) per shoot but not with the Zn concentration in the shoot dry matter. On average, genotypes with lesser deficiency symptoms contained about 42% more Zn per shoot than genotypes with severe deficiency symptoms. In contrast to shoots, the Zn content in roots did not differ between genotypes. Shoot/root ratios of total Zn content were therefore greater for genotypes with lesser deficiency symptoms than for genotypes with severe deficiency symptoms (i.e. all durum wheat genotypes). The results suggest that the enhanced capacity of genotypes for Zn uptake and translocation from roots to shoot meristems under deficient Zn supply might be the most important factor contributing to Zn efficiency in wheat genotypes. The results also demonstrate that under severe Zn deficiency, Zn concentration in the shoot dry matter is not a suitable parameter for distinguishing wheat genotypes in their sensitivity to Zn deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...