Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 1272-1277 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Chromatographia 34 (1992), S. 317-324 
    ISSN: 1612-1112
    Keywords: Field-flow fractionation ; Immune complex ; Antibody coating ; LAT ; Protein adsorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Sedimentation field-flow fractionation was shown to permit the precise evaluation of surface concentrations of human IgG, adsorbed to polystyrene latex spheres of different sizes. Unlike conventional techniques for measuring protein uptake by colloidal substrates, this method allowed a direct evaluation of mass adsorbed per unit area, without the need for potentially destructive labelling reactions. Thus, a four hour adsorption of IgG from a 3–10 fold excess of protein in solution yielded surface concentrations which were 1.4±0.1 mg/m2 on a 272 nm latex and 1.9±0.1 mg/m2 on a latex with a diameter of 142 nm. The lower value coincided with the estimated monolayer surface coverage. The IgG-PS 272 nm adsorption complex was shown to take up negligible amounts of HSA from a 10 mg/mL solution, while its specific uptake of a polyclonal rabbit anti-human IgG was 2.6 molecules per molecule of adsorbed antigen. The same ratio was found for the smaller particles. The surface concentration of adsorbed second antibody, often crucial in immunodiagnostic quantifications, was therefore found to be significantly enhanced by the increased substrate curvature presented by the smaller particles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 537-542 
    ISSN: 0887-6266
    Keywords: sulfonated polyelectrolytes ; gelatin ; complex stoichiometry ; size-exclusion chromatography ; flow field-flow fractionation ; hydrodynamic size ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: No abstract.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 25 (1991), S. 423-441 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: In order to further the understanding of protein-surface interactions in the coagulation system, we have chosen to study plasma protein adsorption onto heparin immobilized surfaces. Heparin-binding proteins are abundant in plasma: a search of amino acid sequences revealed that many plasma proteins have possible heparin binding sites. Plasma protein adsorption to the heparinized surfaces is monitored by a novel technique in which the solution depletion of proteins is analytically determined using quantitative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). This method enables simultaneous, quantitative detection of the majority of plasma proteins before, during, and after their adsorption onto high surface area adsorbents. Using computerized densitometry of silverstained 2-D PAGE gels, the amount of each protein can be determined from the integrated optical density of each protein “spot.” Kinetics of adsorption and adsorption isotherms of four important heparin binding proteins, antithrombin III (ATIII), complement factor C3 (C3), apolipoprotein AI (Apo-AI) and apolipoprotein AIV (Apo-AIV) are reported in this paper. From the adsorption isotherms, the apparent binding constants of each protein-immobilized heparin complex, Ka, were calculated. The surface binding constants were of the same order of magnitude as the respective solution binding constants in the literature. The surface binding constants followed the same order as the respective solution binding constants: Ka (ATIII) 〉 Ka (Apo-AIV) 〉 Ka (C3) 〉 Ka (Apo-AI), indicating that protein binding to the immobilized heparin used is not essentially different from solution binding.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 40 (1998), S. 511-519 
    ISSN: 0021-9304
    Keywords: PEO chemistry ; cell adhesion ; model surface ; RGD peptide ; surface modification ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The ability to study and regulate cell behavior at a biomaterial interface requires strict control over material surface chemistry. Perhaps the greatest challenge to researchers working in this area is preventing the fouling of a given surface due to uncontrolled protein adsorption. This work describes a method for coupling peptides to hydrophobic materials for the purpose of simultaneously preventing nonspecific protein adsorption and controlling cell adhesion. A hexapeptide containing the ubiquitous RGD cell-adhesion motif was coupled to polystyrene (PS) via a polyethylene oxide (PEO) tether in the form of a modified PEO/PPO/PEO triblock copolymer. Triblocks were adsorbed onto PS at a density of 3.3 ± (5.14 × 10-4) mg/m2 (1.4 × 105 ± 2.12 × 101 molecules/μm2), which was determined by isotope 125I labeling. The peptide, GRGDSY, was activated at the N terminus with N-Succinimidyl 3-(2-pyridyldithio) propionate and coupled to immobilized triblocks where the terminal hydroxyls had been converted to sulfhydryl groups. Surface peptide density was measured by amino acid analysis and found to be 1.4 × 104 ± 0.47 × 104 molecules/μm2. PS modified with PEO/PPO/PEO copolymers alone was found to be inert to cell adhesion both in the presence of serum proteins and when exposed to activated RGD peptide. In contrast, PS conjugated with RGD via end-group-activated PEO/PPO/PEO copolymers supported cell adhesion and spreading. The surface coupling scheme reported here should prove valuable for studying cell-ligand interactions under simplified and highly controlled conditions. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 511-519, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...