Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key words Fluorescent oligonucleotide probes ; Planctomycetes ; rRNA ; Whole-cell hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In situ hybridization with rRNA-targeted, fluorescent (Cy3-labeled) oligonucleotide probes was used to analyze bacterial community structure in ethanol- or paraformaldehyde-fixed bulk soil after homogenization of soil samples in 0.1% pyrophosphate by mild ultrasonic treatment. In ethanol-fixed samples 37 ± 7%, and in paraformaldehyde 41 ± 8% of the 4′, 6-diamidino-2-phenylindole(DAPI)-stained cells were detected with the bacterial probe Eub338. The yield could not be increased by enzymatic and/or chemical pretreatments known to enhance the permeability of bacterial cells for probes. However, during storage in ethanol for 7 months, the detectability of bacteria increased in both ethanol- and paraformaldehyde-fixed samples to up to 47 ± 8% due to an increase in the detection yield of members of the α-subdivision of Proteobacteria from 2 ± 1% to 10 ± 3%. Approximately half of the bacteria detected by probe Eub338 could be affiliated to major phylogenetic groups such as the α-, β-, γ-, and δ-subdivisions of Proteobacteria, gram-positive bacteria with a high G+C DNA content, bacteria of the Cytophaga-Flavobacterium cluster of the CFB phylum, and the planctomycetes. The analysis revealed that bacteria of the α- and δ-subdivision of Proteobacteria and the planctomycetes were predominant. Here, members of the α-subdivision of Proteobacteria accounted for approximately 10 ± 3% of DAPI-stained cells, which corresponded to 44 ± 16 × 108 cells (g soil, dry wt.)–1, while members of the δ-subdivision of Proteobacteria made up 4 ± 2% of DAPI-stained cells [17 ± 9 × 108 cells (g soil, dry wt.)–1]. A large population of bacteria in bulk soil was represented by the planctomycetes, which accounted for 7 ± 3% of DAPI-stained cells [32 ± 12 × 108 cells (g soil, dry wt.)–1]. The detection of planctomycetes in soil confirms previous reports on the occurrence of planctomycetes in soil and indicates a yet unknown ecological significance of this group, which to date has never been isolated from terrestrial environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of heavy metals and phytoextraction practices on a soil microbial community were studied during 12 months using a hyperaccumulating plant (Thlaspi caerulescens) grown in an artificially contaminated soil. The 16S ribosomal RNA genes of the Bacteria and the β-Proteobacteria and the amoA gene (encoding the α-subunit of ammonia monooxygenase) were PCR-amplified and analysed by denaturing gradient gel electrophoresis (DGGE). Principal component analysis (PCA) of the DGGE data revealed that: (i) the heavy metals had the most drastic effects on the bacterial groups targeted, (ii) the plant induced changes which could be observed in the amoA and in the Bacteria 16S rRNA gene patterns, (iii) the changes observed during 12 months in the DGGE-patterns of the planted contaminated soil did not indicate recovery of the initial bacterial community present in the non-contaminated soil. The potential function of the microbial community was assessed recording community level physiological profiles (CLPP) and analysing them by PCA. The lower capability of the bacterial community to degrade the substrates provided in the BIOLOG plates, in particular the amino acids, amides and amines, as well as a delay in the average well colour development (AWCD) differentiated the bacterial community of the contaminated samples from that of the non-contaminated ones. However, the plant had a positive effect on substrate utilization as shown by the greater number of substrates used in all planted samples compared to unplanted ones. Finally, the measurement of the potential ammonia oxidation indicated that ammonia oxidising bacteria were completely inhibited in the contaminated soil. The stimulation of ammonia oxidation by the plant observed in the non-contaminated samples was surpassed by the inhibitory effect of the heavy metals in the contaminated soil. This study emphasises the combined use of culture-independent techniques with conventional methods to investigate the ecology of bacteria in their natural habitats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Polar lipid-derived fatty acids (PLFA) commonly found in sulfate-reducing bacteria were detected in high abundance in the sediment harvested from a monitoring well of a petroleum-hydrocarbon (PHC)-contaminated aquifer. Aquifer microcosms were incubated under sulfate-reducing conditions with [methyl-14C]toluene to determine the 14C-mass balances and with [methyl-13C]toluene to follow the flow of carbon from toluene into biomarker fatty acids. An aliquot was used to establish an aquifer-derived toluene-degrading sulfate-reducing consortium, which grew well in liquid medium. Whole-cell hybridization using 16S rRNA-targeted oligonucleotide probes specific for different phylogenetic levels within the sulfate-reducing bacteria was applied in order to characterize the sulfate-reducing populations in the original sediment, the aquifer microcosms, and the aquifer-derived consortium. In the aquifer microcosms, the 14C quantification revealed that 61.6% of the [methyl-14C]toluene was mineralized and 2.7% was assimilated. Following [methyl-13C]toluene depletion (〈1 μM), the highest 13C-enrichment was found in PLFA 16:1ω5c. In addition, biomarker fatty acids characteristic for the genera Desulfobacter and Desulfobacula (cy17:0 and 10Me16:0) were also 13C-enriched, contrary to those of other sulfate-reducing genera, e.g. Desulfovibrio and Synthrophobacter (i17:1ω7c), Desulfobulbus and Desulforhabdus (15:1ω6c and 17:1ω6c). Although hybridization detection rates remained low, indicating low bacterial activities, 43% (aquifer sediment) and 30% (aquifer microcosm) of the total active bacteria belonged to the Desulfobacteriaceae thus supporting the PLFA-based results. Desulfobacter-species (42%), which belong to the Desulfobacteriaceae, dominated the community of the consortium. Our study showed that carbon stable isotope analysis in combination with whole-cell hybridization could link toluene degradation in aquifer microcosms to the metabolic activity of the Desulfobacter-like populations. These populations could play an important role in the clean up of aromatic PHC-contaminated aquifers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...