Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 2693-2705 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Spark-generated shock waves were studied in glow discharges in argon and argon–nitrogen mixtures. Ultraviolet filtered Rayleigh scattering was used to measure radial profiles of gas temperature, and the laser schlieren method was used to measure shock arrival times and axial density gradients. Time accurate, inviscid, axisymmetric fluid dynamics computations were run and results compared with the experiments. Our simulation show that changes in shock structure and velocity in weakly ionized gases are explained by classical gas dynamics, with the critical role of thermal and multi-dimensional effects (transverse gradients, shock curvature, etc.). A direct proof of the thermal mechanism was obtained by pulsing the discharge. With a sub-millisecond delay between starting the discharge and shock launch, plasma parameters reach their steady-state values, but the temperature is still low, laser schlieren signals are virtually identical to those without the discharge, differing dramatically from the signals in discharges with fully established temperature profiles. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...