Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 25 (2000), S. 230-244 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  The research summarized in this paper is part of a multi-year effort focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational efficiency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality in the usual L 2 sense is less desirable than orthogonality in the energy norm. This conclusion has led to the development of a multi-scale linear finite element based on a hierarchical change-of-basis. This work considers the numerical and computational performance of the hierarchical Schauder basis in a Galerkin context. A unique row-column lumping procedure is developed with multi-scale solution strategies for 1-D and 2-D elliptic partial differential equations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 837-856 
    ISSN: 0271-2091
    Keywords: stabilized finite elements ; projection method ; approximate projections ; equal-order interpolation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In an attempt to overcome some of the well-known ‘problems’ with the Q1P0 element, we have devised two ‘stabilized’ versions of the Q1Q1 element, one based on a semi-implicit approximate projection method and the other based on a simple forward Euler technique. While neither one conserves mass in the most desirable manner, both generate a velocity field that is usually ‘close enough’ to divergence-free. After attempting to analyse the two algorithms, each of which includes some ad hoc ‘enhancements’, we present some numerical results to show that they both seem to work well enough. Finally, we point out that any projection method that uses a ‘pressure correction’ approach is inherently limited to time-accurate simulations and, even if treated fully implicitly, is inappropriate for seeking steady states via large time steps.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...