Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurones in chronic epilepsy. Here we analysed the effects of one-sided lateral EC (LEC) and temporoammonic (alvear) path lesion on the development and properties of 4-aminopyridine-induced seizures. Electroencephalography (EEG) analysis of freely moving rats identified that the lesion increased the latency of the hippocampal seizure significantly and decreased the number of brief convulsions. Seizure-induced neuronal c-fos expression was reduced in every hippocampal area following LEC lesion. Immunocytochemical analysis 40 days after the ablation of the LEC identified sprouting of cholinergic and calretinin-containing axons into the dentate molecular layer. Region and subunit specific changes in the expression of ionotropic glutamate receptors (iGluRs) were identified. Although the total amount of AMPA receptor subunits remained unchanged, GluR1flop displayed a significant decrease in the CA1 region. An increase in NR1 and NR2B N-methyl-d-aspartate (NMDA) receptor subunits and KA-2 kainate receptor subunit was identified in the deafferented layers of the hippocampus. These results further emphasize the importance of the lateral entorhinal area in the spread and regulation of hippocampal seizures and highlight the potential role of the rewiring of afferents and rearrangement of iGluRs in the dentate gyrus in hippocampal convulsive activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The basal forebrain can be considered to be a rostral extension of the ascending reticular activating system. A large number of neurons in the basal forebrain have been shown to display higher firing rates when low-voltage fast activity is present in the cortical EEG as opposed to states characterized by large slow waves in both unanaesthetized and anaesthetized animals. However, a smaller number of cells with increased discharge rate during slow waves was also observed in most of these studies. While it is likely that these two types of neurons have opposite roles in the regulation of cortical activation, it is not known how they respond to inputs from the brainstem or the periphery. In the present study, extracellular recordings were made in the basal forebrain of urethane-anaesthetized rats. A total of 52 neurons were studied in which the firing rate was significantly higher during fast cortical EEG waves (F-cells), and 14 neurons in which activity was significantly greater during slow waves (S-cells). The two cell types responded differently to stimulation of the pedunculopontine tegmental nucleus (PPT) and dorsal raphe nucleus (DRN) with short (0.5–1 s) trains of pulses and to noxious sensory stimuli (tail pinch). These stimulations excited most F-cells (80–96%) and inhibited the majority of S-cells (55–67%). In the few F-cells that were inhibited by stimulation, the response varied with the background firing rate of the cell: the higher the firing rate at the time of stimulation, the higher the probability of observing an inhibitory response. In contrast, single electrical pulses delivered to the PPT and DRN excited the majority (72%) of both F- and S-cells. Previous in vitro studies have shown that the application of acetylcholine or serotonin has predominantly inhibitory effects on basal forebrain cholinergic neurons. The predominantly excitatory effect of noxious, PPT and DRN stimulation on F-cells therefore suggests that glutamatergic or other excitatory afferents play a more dominant role in regulating basal forebrain neurons. We have previously shown that F-cells are more prevalent than S-cells. In combination, these findings suggest that basal forebrain neurons, and F-cells in particular, are important in mediating the ascending excitatory drive from the brainstem to the cerebral cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2072
    Keywords: Key words Deramciclane ; Ritanserin ; Chlordiazepoxide ; Slow wave sleep ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The influence of serotonergic and benzodiazepine type anxiolytic drugs on the cortical activation and sleep-wakefulness cycle were compared by evaluating the effects of ritanserin and deramciclane (EGIS-3886), two 5-HT2 receptor antagonists, and chlordiazepoxide on the electroencephalogram (EEG) in freely moving rats. Following drug administration (1, 3, and 10 mg/kg, PO for all drugs), EEG was continuously sampled for 6 h and power spectra were calculated for every 5 s to assess changes in slow wave activity and sleep phases. In a separate test, anticonvulsant effects of the drugs were examined in mice. Both deramciclane and ritanserin slightly increased total time spent in deep sleep (DS) and lengthened sleep episodes. In contrast, chlordiazepoxide had a strong inhibitory action on DS, sleep time being shifted to more superficial light sleep (LS). The incidence and length of the high voltage spindle (HVS) episodes characteristic for the motionless, awake rat were increased at the highest dose of both deramciclane and ritanserin, while it was decreased by chlordiazepoxide. In mice, chlordiazepoxide had a marked anticonvulsant effect, while deramciclane was moderately effective and ritanserin ineffective. In conclusion, the 5-HT2 receptor antagonist anxiolytic drugs seem to be superior compared to the benzodiazepine type anxiolytic drug, chlordiazepoxide, as ritanserin and deramciclane improved sleep quality by increasing sleep episode length and time spent in DS, while chlordiazepoxide enhanced sleep fragmentation and decreased DS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...