Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Clinical and experimental pharmacology and physiology 22 (1995), S. 0 
    ISSN: 1440-1681
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: 1. We tested the effects of blockade of nitric oxide synthesis on renal function under conditions of controlled renal artery pressure. Our hypothesis was that endogenous nitric oxide plays a role in the natriuresis that accompanies increased renal perfusion pressure. We used a novel technique which employed an extracorporeal circuit to produce step changes over a wide range of renal artery pressures in pentobarbitone-anaesthetized rabbits.2. Rabbits were treated with either NG-itro-l-arginine (NOLA, 20 mg/kg, i.v.; n = 8) or its vehicle (n= 8). Renal artery pressure was set (by adjusting the extracorporeal circuit) at 65, 80, 95, 110 and then 130mmHg respectively, at the beginning of each of five 30 min experimental periods.3. NOLA treatment caused profound renal vasoconstriction that was largely independent of the level of renal artery pressure, renal blood flow being 35–43% lower in NOLA-treated than in vehicle-treated rabbits across the range of renal artery pressures tested (P= 0.002). NOLA treatment increased filtration fraction (P = 0.02), and tended to reduce glomerular filtration rate (P= 0.09).4. NOLA-treatment affected sodium excretion in a manner dependent on the level of renal artery pressure, with the slope of the relationship between sodium excretion and renal artery pressure being lower in NOLA-treated than in vehicle-treated rabbits (P= 0.006).5. These data provide direct evidence that in anaesthetized rabbits endogenous nitric oxide (i) tonically dilates the renal vasculature across a wide range of renal perfusion pressures, and (ii) enhances sodium excretion to a progressively greater degree as renal artery pressure is increased. It may therefore play a role in pressure-induced natriuresis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Renal nerves ; Micropuncture ; Furosemide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of unilateral renal denervation on renal handling of water, sodium and potassium was studied with clearance and micropuncture techniques in sodium depleted anaesthetized rats in the nondiuretic state. In clearance experiments renal denervation resulted in a +140 and +320% increase in urine flow and potassium excretion, but sodium excretion of innervated (I) and denervated (D) kidneys was similar (I: 12.0±2.0, D: 14.0±3.6 nM·min−1·g−1; NS). However, upon the loop diuretic furosemide (1 mg·kg−1), a marked denervation natriuresis was observed (I: 2.8±0.9, D: 5.9±1.0 μM·min−1;P〈0.05) and denervation diuresis and kaliuresis persisted, too (+95 and +60%, respectively). Micropuncture results revealed that fractional reabsorption of filtrate to late proximal puncture site was depressed by renal denervation from 62 to 49% while no change in time control rats was seen (64±2 vs. 64±1%; NS). In micropuncture experiments besides augmented urine flow (+82%) from D kidneys also a small denervation natriuresis was present (I: 21.6±6.4, D: 29.2±7.0 nM·min−1;P〈0.05). It is concluded that the lack or marked attenuation of denervation natriuresis in sodium depleted rats were the result of an almost complete compensatory distal reabsorption of the excess sodium (but not of water and potassium) leaving the proximal tubule after denervation. The distal adaptive response can be overcome by furosemide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Key words Cardiac muscle ; Antiarrhythmic drugs ; Electrophysiology ; Recovery of Vmax ; Action potential duration ; Frequency-dependence ; Sodium channels ; Potassium channels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The cellular electrophysiological effects of EGIS-7229 (5-chlor-4-[N-(3,4-dimethoxy-phenyl-ethyl)-amino-propylamino]-3(2H)-pyridazinone fumarate), a novel antiarrhythmic agent, was studied using conventional microelectrode techniques in canine cardiac Purkinje fibers and papillary muscle preparations obtained from man, rabbits and guinea pigs. Low concentration of EGIS-7229 (3 μmol/l) selectively lengthened action potential duration (both APD50 and APD90) in all preparations. The effect of higher concentrations (30–100 μmol/l) of EGIS-7229 on action potential duration was variable depending on the preparation studied: in rabbit and human papillary muscles both APD50 and APD90 were lengthened, in canine Purkinje fibers APD90 was lengthened but APD50 was shortened, while in guinea pig papillary muscles both APD50 and APD90 were shortened by high concentrations of the drug. At these higher concentrations EGIS-7229 also decreased the maximum velocity of action potential upstroke (V max) and depressed the plateau of action potentials without affecting the resting membrane potential or action potential amplitude. Both reduction of V max and lengthening of APD were frequency dependent. The former effect was more prominent at higher pacing frequencies, while the latter was more pronounced at lower driving rates. In guinea pig papillary muscle, the time constant of recovery from V max-block was 719 ± 33 ms (n = 18) and the rate of onset of the block was 1.81 ± 0.06 AP–1 (n = 16) in the presence of 100 μmol/l EGIS-7229. EGIS-7229 had a complex action on refractoriness in guinea pig papillary muscles: ERP was lengthened at low concentrations (3 to 10 μmol/l), unchanged at 30 μmol/l and shortened at 100 μmol/l. The ratio of ERP/APD90, however, was significantly increased at concentrations higher than 3 μmol/l. In canine Purkinje fiber, when the delayed rectifier K current (IK) was blocked by d-sotalol (60 μmol/l) and APD was shortened back to its control value by additional application of nicorandil (15 μmol/l), APD was not affected by 3 μmol/l but was shortened by 30 μmol/l of EGIS-7229. 100 μmol/l EGIS-7229 shortened APD in guinea pig papillary muscle. This effect of EGIS-7229 was effectively prevented by nifedipine pretreatment (10 μmol/l). In this preparation, EGIS-7229 also decreased the V max of the slow action potential, evoked in the presence of 20 mmol/l external K+ plus 0.5 mmol/l Ba2+. It is likely that EGIS-7229 at low concentrations blocks IK in human, canine, rabbit and guinea pig cardiac preparations, but at higher concentrations also inhibits Ca and Na currents. Therefore, EGIS-7229 appears to carry mixed class III, IV and IB antiarrhythmic properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Kidney innervation ; Sodium excretion ; Alpha adrenergic receptors ; Norepinephrine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Experiments were performed on anesthetized dogs to study whether or not renal tubules of the chronically denervated kidney show supersensitivity toward circulating catecholamines. In one kidney the influence of plasma catecholamines was inhibited by intrarenal administration of the alpha adrenergic receptor blocker phenoxybenzamine (POB, 2 μg/min), and renal parameters of the infused kidney were compared to those of the contralateral noninfused organ. Before POB infusion urine flow (V), urinary sodium and potassium excretion (UNaV, UKV) as well as clearance of inulin and PAH (GFR, CPAH) were similar in infused and contralateral kidneys in all the groups studied. In dogs (n=8) with two innervated kidneys POB infusion elevated V and UNaV by 53±13% and 102±34% (p〈0.05). In dogs (n=8) with acute bilateral renal denervation POB administration failed to alter any of the measured parameters. In contrast, V and UNaV from chronically denervated kidneys (n=7) were increased after POB infusion by 40±9% and 103±34% (p〈0.05). Glomerular filtration rate, CPAH and UKV were not changed by alpha adrenoceptor blockade in any of the groups. In an additional group of animals (n=8) acute unilateral renal denervation increased V and UNaV to a significantly higher extent (by 282±85% and 330±106%) than POB administration did in the innervated kidney and elevated UKV (44±10%), too. It is concluded that supersensitivity to catecholamines developed in renal tubules of the chronically denervated dog kidney and, in consequence, circulating catecholamines at elevated plasma levels caused by surgery were capable of increasing tubular reabsorption of sodium and water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Renal denervation ; Sodium excretion ; Plasma volume ; Anesthesia ; Sodium depletion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The possible role of a reduction in plasma volume (PV) by surgery as well as the importance of dietary Na supply in denervation natriuresis have been investigated on Inactinanesthetized male rats subjected to acute unilateral renal sympathectomy. Four groups were studied: I. Normal Na diet (n=14); II. Low Na diet (boiled rice for 2 weeks)-isotonic glucose infusion (n=10); III. Low Na diet-isotonic saline infusion (n=5); IV. Normal and low Na diet rats served as conscious control (n=10). Surgery caused a 9–11% increase in hematocrit and a 15–18% decrease in PV in groups I–III. Plasma volume repletion (PVR) reverted these changes. In group I sodium excretion from both kidneys was only a fraction of that in conscious animals kept on the same diet (group IV) and marked denervation natriuresis was observed. After PVR sodium output of innervated (I) kidneys was not different from that of conscious rats but denervated (D) kidneys excreted twice that amount. In group II Na excretion was increased compared to conscious Na depleted controls, and PVR augmented further this difference. Surprisingly, the difference in urinary sodium excretion (UNaV) between I and D kidneys was absent after surgery and was minimal after PVR in this group. In group III physiological saline infusion reverted the effect of Na depletion and denervation natriuresis was present both before and after PVR. It is concluded that PV reduction does not play a major role in denervation phenomenon. In Na depleted anesthetized rats denervation natriuresis is absent or minimal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2072
    Keywords: Key words Deramciclane ; Ritanserin ; Chlordiazepoxide ; Slow wave sleep ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The influence of serotonergic and benzodiazepine type anxiolytic drugs on the cortical activation and sleep-wakefulness cycle were compared by evaluating the effects of ritanserin and deramciclane (EGIS-3886), two 5-HT2 receptor antagonists, and chlordiazepoxide on the electroencephalogram (EEG) in freely moving rats. Following drug administration (1, 3, and 10 mg/kg, PO for all drugs), EEG was continuously sampled for 6 h and power spectra were calculated for every 5 s to assess changes in slow wave activity and sleep phases. In a separate test, anticonvulsant effects of the drugs were examined in mice. Both deramciclane and ritanserin slightly increased total time spent in deep sleep (DS) and lengthened sleep episodes. In contrast, chlordiazepoxide had a strong inhibitory action on DS, sleep time being shifted to more superficial light sleep (LS). The incidence and length of the high voltage spindle (HVS) episodes characteristic for the motionless, awake rat were increased at the highest dose of both deramciclane and ritanserin, while it was decreased by chlordiazepoxide. In mice, chlordiazepoxide had a marked anticonvulsant effect, while deramciclane was moderately effective and ritanserin ineffective. In conclusion, the 5-HT2 receptor antagonist anxiolytic drugs seem to be superior compared to the benzodiazepine type anxiolytic drug, chlordiazepoxide, as ritanserin and deramciclane improved sleep quality by increasing sleep episode length and time spent in DS, while chlordiazepoxide enhanced sleep fragmentation and decreased DS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...