Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 1974-1976 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Three fast-scanning heterodyne receivers, swept between 75 and 110, 110 and 170, and 170 and 210 GHz have measured electron cyclotron emission on the horizontal midplane of the tokamak fusion test reactor (TFTR) plasma. A second-harmonic microwave mixer in the 170–210-GHz receiver allows the use of a 75–110-GHz backward wave oscillator as a swept local oscillator. Electron temperature profile evolution data with a time resolution of 2 ms and a profile acquisition rate of 250 Hz will be presented for gas-fueled and pellet-fueled ohmic and neutral beam heated plasmas with toroidal fields up to 5.2 T. Recent results from a new swept-mode absolute calibration technique which can improve the accuracy and data collection efficiency during in situ calibration will also be presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1565-1567 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A 200-kW, ∼60-GHz gyrotron will be used on TFTR during D–T operation for collective Thomson scattering diagnostics of confined alpha-particle velocity distribution and density. Scattering angles of up to 120° are under consideration using x-mode propagation to increase the density cutoff limit. Useful signal-to-noise ratios will be possible in plasmas where ne(approximately-greater-than)5×1013 cm−3, nα(approximately-greater-than)2×1011 cm−3, and the background emission is (approximately-less-than)30 eV equivalent blackbody level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1593-1598 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway condition is varied are presented for discharges in the PLT tokamak.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Most magnetically confined plasma devices cannot take advantage of standard electron cyclotron emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field (e.g., ωp(very-much-greater-than)Ωc in spherical tokamaks) or they do not have sufficient density and temperature to reach the blackbody condition (τ〉2). The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large ki. For example, the National Spherical Torus Experiment (NSTX) will have an optical thickness τ(approximate)3000 and CDX-U will have τ(approximate)300. One can reach the blackbody condition with a plasma density (approximate)1011 cm−3 and Te(approximate)1 eV. This makes it attractive to most plasma devices. The serious issue with using EBW is the wave accessibility for the emission measurement. Simple accessibility arguments indicate the wave may be accessible by either direct coupling or mode conversion through an extremely narrow layer ((approximate)1–2 mm). EBW experiments on the Current Drive Experiment-Upgrade (CDX-U) will test the accessibility properties of the spherical tokamak configuration. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Perturbative experiments on the Tokamak Fusion Test Reactor [Phys. Plasmas 4, 1736 (1997)] (TFTR) have investigated transport in reverse shear plasmas. On TFTR, reverse magnetic shear plasmas bifurcate into two states with different transport properties: reverse shear (RS) and enhanced reverse shear (ERS) with improved core confinement. Measurements of the 14 MeV t(d,n)α neutrons and charge-exchange recombination radiation spectra are used to infer the trace tritium and helium profiles, respectively. The profile evolution indicate the formation of core particle transport barriers in ERS plasmas. The transport barrier is manifested by an order-of-magnitude reduction in the particle diffusivity (DT,DHe) and a smaller reduction in the pinch within the reverse shear region. The low diffusivities are consistent with neoclassical predictions. Furthermore, DT and DHe(approximate)χeff, the effective thermal diffusivity. Although the measured coefficients imply no helium ash accumulation, the situation is uncertain in a reactor due to unknown χeff scaling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4065-4073 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that radial localization of optically thin electron cyclotron emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during lower hybrid current drive on the Princeton Beta Experiment-Modified (PBX-M) tokamak [Bernabei, et al., Phys. Fluids B 5, 2562 (1993)]. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during lower hybrid current drive. The time evolution of these measurements after the lower hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High or enhanced confinement (H-mode) plasmas have been obtained for the first time with nearly equal concentrations of deuterium and tritium in high-temperature, high poloidal beta plasmas in the Tokamak Fusion Test Reactor (TFTR) [McGuire, Phys. Plasmas 2, 2176 (1995)]. Tritium fueling was provided mainly through high-power neutral beam injection (NBI) with powers up to 31 MW and beam energies of 90–110 keV. A transition to a circular limiter H-mode configuration has been obtained, following a programmed rapid decrease of the plasma current. Isotope effects, due to the presence of tritium, led to different behavior for deuterium–deuterium (DD) and deuterium–tritium (DT) H-modes relative to confinement, edge localized magnetohydrodynamic modes (ELMs), and ELM effects on fusion products. However, the threshold power for the H-mode transition was the same in DD and DT. Some of the highest values of the global energy confinement time, τE, have been achieved on TFTR during the ELM-free phase of DT H-mode plasmas. Enhancements of τE greater than four times the L-mode have been attained. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Tokamak Fusion Test Reactor (TFTR) (R. J. Hawryluk, to be published in Rev. Mod. Phys.) experiments on high-temperature plasmas, that culminated in the study of deuterium–tritium D–T plasmas containing significant populations of energetic alpha particles, spanned over two decades from conception to completion. During the design of TFTR, the key physics issues were magnetohydrodynamic (MHD) equilibrium and stability, plasma energy transport, impurity effects, and plasma reactivity. Energetic particle physics was given less attention during this phase because, in part, of the necessity to address the issues that would create the conditions for the study of energetic particles and also the lack of diagnostics to study the energetic particles in detail. The worldwide tokamak program including the contributions from TFTR made substantial progress during the past two decades in addressing the fundamental issues affecting the performance of high-temperature plasmas and the behavior of energetic particles. The progress has been the result of the construction of new facilities, which enabled the production of high-temperature well-confined plasmas, development of sophisticated diagnostic techniques to study both the background plasma and the resulting energetic fusion products, and computational techniques to both interpret the experimental results and to predict the outcome of experiments. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas 2, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium–tritium (D–T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high li). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (qa(approximate)4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-li plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D–T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D–T plasmas with q0〉1 and weak magnetic shear in the central region, a toroidal Alfvén eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The roles of turbulence stabilization by sheared E×B flow and Shafranov shift gradients are examined for Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] enhanced reverse-shear (ERS) plasmas. Both effects in combination provide the basis of a positive-feedback model that predicts reinforced turbulence suppression with increasing pressure gradient. Local fluctuation behavior at the onset of ERS confinement is consistent with this framework. The power required for transitions into the ERS regime are lower when high power neutral beams are applied earlier in the current profile evolution, consistent with the suggestion that both effects play a role. Separation of the roles of E×B and Shafranov shift effects was performed by varying the E×B shear through changes in the toroidal velocity with nearly steady-state pressure profiles. Transport and fluctuation levels increase only when E×B shearing rates are driven below a critical value that is comparable to the fastest linear growth rates of the dominant instabilities. While a turbulence suppression criterion that involves the ratio of shearing to linear growth rates is in accord with many of these results, the existence of hidden dependencies of the criterion is suggested in experiments where the toroidal field was varied. The forward transition into the ERS regime has also been examined in strongly rotating plasmas. The power threshold is higher with unidirectional injection than with balance injection. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...