Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 58 (1987), S. 1393-1400 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high-voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the C ii radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Neoclassical simulations of alpha particle density profiles in high fusion power plasmas on the Tokamak Fusion Test Reactor [Phys. Plasmas 5, 1577 (1998)] are found to be in good agreement with measurements of the alpha distribution function made with a sensitive active neutral particle diagnostic. The calculations are carried out in Hamiltonian magnetic coordinates with a fast, particle-following Monte Carlo code which includes the neoclassical transport processes, a recent first-principles model for stochastic ripple loss and collisional effects. New calculations show that monotonic shear alpha particles are virtually unaffected by toroidal field ripple. The calculations show that in reversed shear the confinement domain is not empty for trapped alphas at birth and allow an estimate of the actual alpha particle densities measured with the pellet charge exchange diagnostic. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1645-1645 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A polarimeter has been designed and built to measure the direction of linearly polarized light. The device will be installed on the PBX-M tokamak to view visible light from collisional excitation of a diagnostic neutral beam operated with helium. Due to the Zeeman effect the π-component of the emitted radiation from the helium beam will be linearly polarized parallel to the direction of the local magnetic field, when viewed perpendicular to the plane of the magnetic field components. A Fabry–Perot interferometer will be used, because of its high resolution and throughput, to transmit only the π component of the Zeeman triplet. A photoelastic modulator1 (PEM) is used to modulate the polarization angle of the light. Depending on the orientation of the PEM it can measure the sine or cosine of the angle of polarization. A test setup consisting of two PEMs to measure both the sine and cosine of the polarization angle has demonstrated a resolution of 〈0.1°. This work was supported by U.S. DOE Contract No. DE-AC03-86ER80409.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Perturbative experiments on the Tokamak Fusion Test Reactor [Phys. Plasmas 4, 1736 (1997)] (TFTR) have investigated transport in reverse shear plasmas. On TFTR, reverse magnetic shear plasmas bifurcate into two states with different transport properties: reverse shear (RS) and enhanced reverse shear (ERS) with improved core confinement. Measurements of the 14 MeV t(d,n)α neutrons and charge-exchange recombination radiation spectra are used to infer the trace tritium and helium profiles, respectively. The profile evolution indicate the formation of core particle transport barriers in ERS plasmas. The transport barrier is manifested by an order-of-magnitude reduction in the particle diffusivity (DT,DHe) and a smaller reduction in the pinch within the reverse shear region. The low diffusivities are consistent with neoclassical predictions. Furthermore, DT and DHe(approximate)χeff, the effective thermal diffusivity. Although the measured coefficients imply no helium ash accumulation, the situation is uncertain in a reactor due to unknown χeff scaling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Purely alpha-particle-driven toroidal Alfvén eigenmodes (TAEs) with toroidal mode numbers n=1–6 have been observed in deuterium–tritium (D–T) plasmas on the tokamak fusion test reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. The appearance of mode activity following termination of neutral beam injection in plasmas with q(0)〉1 is generally consistent with theoretical predictions of TAE stability [G. Y. Fu et al. Phys. Plasmas 3, 4036 (1996)]. Internal reflectometer measurements of TAE activity is compared with theoretical calculations of the radial mode structure. Core localization of the modes to the region of reduced central magnetic shear is confirmed, however the mode structure can deviate significantly from theoretical estimates. The peak measured TAE amplitude of δn/n∼10−4 at r/a∼0.3−0.4 corresponds to δB/B∼10−5, while δB/B∼10−8 is measured at the plasma edge. Enhanced alpha particle loss associated with TAE activity has not been observed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 4001-4008 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)] predict 40% total alpha losses and 20% ripple diffusion losses. This is about double the loss rate of a comparable non-reversed magnetic shear plasma. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Wall conditioning in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] by injection of lithium pellets into the plasma has resulted in large improvements in deuterium–tritium fusion power production (up to 10.7 MW), the Lawson triple product (up to 1021 m−3 s keV), and energy confinement time (up to 330 ms). The maximum plasma current for access to high-performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through (1) distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and (2) injection of four Li pellets into the Ohmic phase of supershot discharges before neutral-beam heating is begun. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Tearing-type modes are observed in most high confinement operation regimes in the Tokamak Fusion Test Reactor (TFTR) [Nucl. Fusion 35, 1429 (1995)]. Three different methods are used to measure the magnetic island widths: external magnetic coils, internal temperature fluctuation from electron cyclotron emission (ECE) diagnostics and an experiment where the plasma major radius is rapidly shifted ("Jog" experiments). A good agreement between the three methods is observed. Numerical and analytic calculations of Δ′ (the tearing instability index) are compared with an experimental measurement of Δ′ using the tearing mode eigenfunction mapped from the jog data. The obtained negative Δ′ indicates that the observed tearing modes cannot be explained by the classical current-gradient-driven tearing theory. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1348-1355 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The conjecture that the safety factor profile, q(r), controls the improvement in tokamak plasmas from poor confinement in the Low- (L-) mode regime to improved confinement in the supershot regime has been tested in two experiments on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. 1, 51 (1987)]. First, helium was puffed into the beam-heated phase of a supershot discharge, which induced a degradation from supershot to L-mode confinement in about 100 ms, far less than the current relaxation time. The q and shear profiles measured by a motional Stark effect polarimeter showed little change during the confinement degradation. Second, rapid current ramps in supershot plasmas altered the q profile, but were observed not to change significantly the energy confinement. Thus, enhanced confinement in supershot plasmas is not due to a particular q profile, which has enhanced stability or transport properties. The discharges making a continuous transition between supershot and L-mode confinement were also used to test the critical-electron-temperature-gradient transport model. It was found that this model could not reproduce the large changes in electron and ion temperature caused by the change in confinement. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High or enhanced confinement (H-mode) plasmas have been obtained for the first time with nearly equal concentrations of deuterium and tritium in high-temperature, high poloidal beta plasmas in the Tokamak Fusion Test Reactor (TFTR) [McGuire, Phys. Plasmas 2, 2176 (1995)]. Tritium fueling was provided mainly through high-power neutral beam injection (NBI) with powers up to 31 MW and beam energies of 90–110 keV. A transition to a circular limiter H-mode configuration has been obtained, following a programmed rapid decrease of the plasma current. Isotope effects, due to the presence of tritium, led to different behavior for deuterium–deuterium (DD) and deuterium–tritium (DT) H-modes relative to confinement, edge localized magnetohydrodynamic modes (ELMs), and ELM effects on fusion products. However, the threshold power for the H-mode transition was the same in DD and DT. Some of the highest values of the global energy confinement time, τE, have been achieved on TFTR during the ELM-free phase of DT H-mode plasmas. Enhancements of τE greater than four times the L-mode have been attained. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...