Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Solid-State 1H-NMR measurements of T1 relaxation times performed on polycarbonate-poly(ethyleneterephthalate) (PC-PET) blends point out the presence of two separate domains with apparent dimensions of about 80 nm. The variation of PET domain relaxation time with the increase of PC content is explained in terms of an interface in which parts of the PC molecules are finely dispersed into the PET matrix. Relaxation parameters and compositions match very well an equation that quantitatively describes a three-phase model formed by two domains separated by an interface of mixed components. Micrographs obtained by transmission electron microscopy (TEM) clearly reveal the presence of two separate domains with a phase inversion at 40/60 wt% composition. PET domains, although larger than expected from NMR analysis, are characterized by a dispersion of small PC particles that are considered responsible for the observed diffusion of magnetization from PET to PC domains. The partial miscibility seems to be physical in nature rather than due to transesterification processes between the components, as stem from 1H-NMR spectra in solution of PET and PC-PET blends. T1 relaxation times measured in the same way on totally immiscible PC-PA-6 blends, support, by contrast, the NMR interpretation of PC-PET results. The mechanical properties of PC-PET blends exhibit ductile behavior throughout the entire range of composition. This indicates that PC and PET are mechanically compatible. This is also in agreement with the isothermal crystallization data for PET at various compositions of PC-PET. These results are in agreement with the existence of a partial miscibility between PET and PC. © 1994 John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...