Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 777 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: We have studied the activation of human ml-muscarinic receptors in a genetically engineered Chinese hamster ovary cell line (CHO-ml) to determine which second messenger systems affect the secretion of APP via the non-amyloidogenie route. Carbachol activation of the signaling pathways in CHO-ml cells promotes APP secretion by activation of both protein kinase C (PKC)-dependent or Ca++ -dependent second messenger pathways. Both pathways converge to increase the enzyme activity of phospholipase A2 (PLA2), the enzyme that releases arachidonic acid from cellular stores. Directly activating PLA2 with melittin, a peptide from bee venom, or by adding arachidonic acid directly to cultured cells increases the secretion of APP. Thus, our results indicate that arachidonic acid is yet another cellular second messenger involved in regulating the metabolism of APP in addition to PKC and cytoplasmic Ca++. Moreover, activation of PLA2 appears to be an obligatory event in increasing the secretion of APP from CHO-ml cells by the various methods of activation that we have tried thus far.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 18 (1989), S. 209-224 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Development of the cholinergic enzymes, choline acetyltransferase (ChAT) and AChE, and of the AChE-positive innervation in the cochlea was studied biochemically and morphologically in the postnatal mouse up to 26 days. Both ChAT and AChE are already present at birth in levels comparable to 50 and 20% of near-adult values, respectively. Increases in the enzymatic activities occur mainly during the second postnatal week. ChAT increases primarily in the basal turn; the specific activities in the basal and mid turns become about equal and at least twice of the values found in the apex. AChE increase continues throughout the entire cochlea; at all times its activity is highest in the base and lowest in the apex. In the light microscope, AChE-positive fibres are seen to enter the organ in the intraganglionic bundle during late foetal development and travel upwards via radial bundles. The fibres destined for outer hair cells usually differentiate first and take a separate route. They either cross the prospective tunnel of Corti directly or take a spiral course in front of inner pillar cells to form the inner pillar bundle. The tunnel fibres are radially oriented and provide the innervation to outer hair cells in narrow vertical sectors. In most cases, the outer hair cells are being innervated by the 4th day. Between the 4th and the 6th day, the tunnel fibres reach the outer hair cells in the third row; the first and second outer spiral bundles are formed. The AChE-positive innervation of the inner spiral bundle and plexus forms in short segments, and the bundle may be still discontinuous even by the 6th day. By the 12th day the innervation is complete. In the electron microscope, the stain for AChE may allow identification of growing efferent fibres before their ultrastructural differentiation. Both ChAT and AChE activities are early markers of the differentiating efferent system. An ingrowth of the cholinergic fibres to the entire cochlea occurs before birth. The greatest increase of AChE occurs between the 4th and 10th day, relating in time to efferent synaptogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 15 (1990), S. 123-143 
    ISSN: 0741-0581
    Keywords: AChE ; ChAT ; Immunoreactivity ; Electron microscopy ; Acetyltransferase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: We have compared the biochemical expression of cholinergic enzymes with the morphological differentiation of efferent nerve fibers and endings in the cochlea of the postnatally developing mouse. Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are present in the newborn cochlea at specific activities 63% and 25%, respectively, of their mature levels. The relative increases in ChAT, in AChE, and in its molecular forms over the newborn values start about day 4 and reach maturity by about day 10. The biochemical results correlate well with the massive presence of nerve fibers stained immunocytochemically for ChAT and AChE or enzymatically for AChE in the inner and outer hair cell regions. Ultrastructural studies, however, indicate the presence of only few vesiculated fibers and endings in the inner and outer hair cell regions. The appearance of large, cytologically mature endings occurs only toward the end of the third postnatal week. The discrepancy may be resolved in the electron microscope using the enzymatic staining for AChE. Labeling is seen on many nonvesiculated fibers and endings in the hair cell regions, suggesting that the majority of the efferent fibers in the perinatal organ may be biochemically differentiated but morphologically immature. The results may imply that the efferents to inner and outer hair cells develop earlier than indicated by previous ultrastructural studies. Moreover, the pattern of development suggests that in the cochlea, as in other tissues, the biochemical differentiation of the efferent innervation may precede the morphological maturation.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...