Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: lipids ; membranes ; Escherichia coli ; temperature adaptation ; fatty acids ; phase separations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The minimum requirement for unsaturated fatty acids was investigated inE. coli using a mutant impaired in the synthesis of vaccenic acid. Exogenously supplied palmitic acid was incorporated by this mutant which led to a reduction in the proportion of cellular unsaturated fatty acids. Growth was impaired as the level of saturated fatty acids approached 76% at 37°C and 60% at 30°C. The basis of this growth inhibition was investigated. Most transport systems and enzymes examined remained active in palmitate-grown cells although the specific activities of glutamate uptake and succinic dehydrogenase were depressed 50%. Fluorescent probes of membrane organization indicated that fluidity decreased with palmitate incorportation. Temperature scans with parinaric acid indicated that rigid lipid domains exist in palmitategrown cells at their respective growth temperature. Freeze-fracture electron microscopy confirmed the presence of phase separations (particle-free areas) in palmitate-grown cells held at their growth temperature prior to quenching. The extent of this separation into particle-free and particle-enriched domains was equivalent to that induced by a shift to 0°C in control cells. The incorporation of palmitate increased nucleotide leakage over threefold. The cytoplasmic enzyme β-galactosidase was released into the surrounding medium as the concentration of unsaturated fatty acid approached the minimum for a particular growth temperature. Lysis was observed as a decrease in turbidity when cells which had been grown with palmitate were shifted to a lower growth temperature. From these results we propose that leakage and partial lysis are the major factors contributing to the apparent decrease in growth rate caused by the excessive incorporation of palmitate. Further, we propose that membrane integrity may determine the minimum requirement for unsaturated fatty acids inE. coli rather than a specific effect on membrane transport and/or membrane-bound enzymes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cellulose ; Cx cellulase ; Fruit (ripening, softening) ; Persea (fruit ripening)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Avocado (Persea americana Mill.) fruit produce copious quantities of the enzyme Cx-cellulase (EC 3.2.1.4) during ripening. The possibility that Cx-cellulase is able to disrupt cellulose microfibril oranization was investigated using molecular weight (Mr), x-ray diffraction, and ultrastructural analyses of cell walls from unripe avocado fruit incubated with the purified enzyme. Results indicate that Cx-cellulase causes a downshift in the Mr of unbranched cell-wall polymers in the Mr range of 106–107 Da. There is an increase in the proportion of crystalline cellulose, and cellulose fibrils appear to lose cohesiveness in response to enzyme activity. We propose that Cx-cellulase attacks avocado cellulose at accessible sites in the peripheral and integral noncrystalline regions of the microfibril, resulting in a loss of cohesiveness within the fibril structure and an alteration in the binding of associated cell-wall matrix polysaccharides. The initial loss of avocado mesocarp firmness during fruit ripening may be linked to the onset of Cx-cellulase activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...