Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 656 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 4 (1992), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Thirty-one neurons which exhibited ocular pursuit-related activity [visual-tracking (VT) neurons] were found clustered within area MST-I (the lateral part of area MST) of two rhesus monkeys. Their responses were studied to determine whether this activity was correlated only with pursuit eye movement or with head movement as well. The latter hypothesis appeared to be preferable since visual, eye movement and head movement inputs were found to be mapped in register onto most of these cells. First, in each cell tested (n=19) the pursuit response persisted even in the absence of retinal image motion, offering clear evidence for non-visual input. Second, 22 of the 31 cells were directionally responsive to moving visual stimuli and in 20 of these the preferred directions for the visual motion and pursuit responses agreed closely. Responses were also obtained from many of the same cells during suppression of both the horizontal and the vertical vestibulo-ocular reflex (VOR). In each case, where directional visual, pursuit and VOR suppression responses were each obtained, vector addition of responses during suppression of the horizontal and vertical VOR resulted in an estimated preferred direction for head rotation which was closely aligned with the preferred direction previously obtained for eye motion or visual motion. In addition, the preferred direction of head movement was conserved even when the VOR was elicited by passive head rotation in complete darkness, although the responses in this instance were, on average, only 62% of those obtained during VOR suppression. Our interpretation is that, at present, MST-I VT neurons are best described as encoding the direction of target motion in space-centred coordinates by integrating inputs reflecting retinal image motion plus eye and head movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 49 (1983), S. 143-146 
    ISSN: 1432-1106
    Keywords: Accessory optic system ; Retinal projections ; Cat and rabbit ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Retinal projections to the accessory optic nuclei of rabbits and cats were demonstrated with standard autoradiographic techniques following intraocular injections of [35S]methionine and [3H]proline. In the pigmented rabbit, albino rabbit, normally pigmented domestic cat and Siamese cat the medial, lateral and dorsal terminal nuclei (MTN, LTN, and DTN, respectively) of the accessory optic system were densely labelled on the side contralateral to the injected eye. An ipsilateral projection, while clearly present in all but the Siamese cat, varied in the number of nuclei involved. In the albino rabbit, the ipsilateral projection ended in the MTN, while in the pigmented rabbit, it ended in the MTN, LTN and DTN, and in the normally pigmented domestic cat it ended in the MTN and LTN. These results indicate that the accessory optic system in rabbits and cats is more extensive than previously reported and that differences exist in the accessory optic system which may be related to genetic differences in normally pigmented and hypopigmented animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 78 (1989), S. 113-131 
    ISSN: 1432-1106
    Keywords: Tracking cells ; Foveal receptive fields ; STS ; MT ; FST ; Direction selectivity ; Awake monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Visual responses were recorded from neurons in the superior temporal sulcus (STS) of awake, behaving cynomolgus monkeys trained to fixate a small spot of light. Visual receptive fields, directionality, and responses during visual tracking were examined quantitatively for 50 cells in the foveal portion of the middle temporal (MT) visual area and surrounding cortex. Directionality indices and preferred directions for tracked and nontracked stimuli were compared. Eighteen cells (18/50 = 36%) were found to respond preferentially during tracking (tracking cells), 7 within MT, 9 in area FST on the floor of the STS, and 2 in unidentified areas. Three distinctly different tracking response profiles (VTS, VTO, and T) were observed. VTS and VTO cells had foveal receptive fields and gave directionally selective visual responses. VTS cells (3 in foveal MT, 6 in FST, 1 in an unidentified area) had a preferred visual direction that coincided with the preferred tracking direction, and began responding 50–100 ms before the onset of tracking. VTO cells (4 in foveal MT, 0 in FST, 1 in an unidentified area) had a preferred visual direction opposite to the preferred tracking direction, and began responding 0–100 ms after the onset of tracking. T cells (0 in MT, 3 in FST) had no visual responses and began responding simultaneously with the onset of tracking. It is suggested that this region of the brain could be the primary location for converting direction-specific visual responses into signals specifying at least the direction of an intended pursuit movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 78 (1989), S. 90-112 
    ISSN: 1432-1106
    Keywords: Middle temporal area ; Direction selective ; Fovea ; Superior temporal sulcus ; Awake monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The response properties of 633 neurons from striate and prestriate cortex were recorded in 3 hemispheres of two awake cynomolgus monkeys while they fixated or tracked a small spot of light. Of 254 penetrations located at 1 mm intervals, 39% were identifiable from visible electrolytic lesions or electrode tracks and were used to reconstruct the positions of all recording sites. A total of 226 cells were located in the superior temporal sulcus and 81 cells in area V1. The location and visuotopic organization of the foveal portion of the middle temporal (MT) visual area were determined in three hemispheres. MT was defined physiologically on the basis of direction-selectivity, receptive field size, and retinotopic organization. Of 170 MT neurons, most were motion sensitive, and 65% had a directionality index, (best — opposite)/best, of 0.6 or higher. MT was defined anatomically on the basis of myelin staining within the superior temporal sulcus (STS). On the posterior bank of the STS the physiologically defined border corresponded closely to a myelin border visible on our sections. Distinct myelin borders were not consistently identifiable on the anterior bank. The representation of the central fovea (eccentricities of 0–1 deg) was located partly on the floor, but mostly on the posterior bank of the STS at the extreme postero-lateral edge of MT. In all three hemispheres foveal MT extended onto the roof of a cleft formed between the posterior bank and a wide flattened area on the floor of the STS. This region lies 10–12 mm below the brain surface, measuring along a line normal to the surface at a point 2–3 mm antero-lateral to foveal V1. The area of MT was 6–9 mm2 for the central fovea (0–1 deg), 15–24 mm2 for the entire fovea (0–3 deg), and 28–40 mm2 including the fovea and parafovea (0–10 deg). A visuotopic map of central foveal V1 (0–1 deg) was obtained in one animal. The measured area of this representation was 116 mm2. Using published estimates of the total areas of cynomolgus MT and V1 (73 and 1200 mm2 respectively) the ratio of central foveal to total area was calculated to be 0.10 for both MT (7.5/73) and V1 (116/1200), indicating that the relative magnification of the foveal versus the peripheral visual field is preserved in the mapping of V1 onto MT. A separate representation of the central visual field was found immediately adjacent to foveal MT. This region, the FST area (Ungerleider et al. 1982; Ungerleider and Desimone 1986a, b), was distinguishable from MT in three ways: 1) by the presence of occasional visually unresponsive cells, 2) by the presence of cells with very large receptive fields intermingled with cells whose receptive fields are comparable in size to those found in foveal MT, and 3) by an increased incidence of cells responding during tracking. Of 34 FST neurons, 53% had a directionality index of 0.6 or higher. An additional 22 cells recorded in the superior temporal sulcus were judged to be outside both MT and FST.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 86 (1991), S. 608-616 
    ISSN: 1432-1106
    Keywords: Visuo-spatial stability ; Visual motion ; Neurons ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Motion of background visual images across the retina during slow tracking eye movements is usually not consciously perceived so long as the retinal image motion results entirely from the voluntary slow eye movement (otherwise the surround would appear to move during pursuit eye movements). To address the question of where in the brain such filtering might occur, the responses of cells in 3 visuo-cortical areas of macaque monkeys were compared when retinal image motion of background images was caused by object motion as opposed to a pursuit eye movement. While almost all cells in areas V4 and MT responded indiscriminately to retinal image motion arising from any source, most of those recorded in the dorsal zone of area MST (MSTd), as well as a smaller proportion in lateral MST (MST1), responded preferentially to externally-induced motion and only weakly or not at all to self-induced visual motion. Such cells preserve visuo-spatial stability during low-velocity voluntary eye movements and could contribute to the process of providing consistent spatial orientation regardless of whether the eyes are moving or stationary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Nucleus of the optic tract ; Dorsal terminal nucleus ; Inferior olive ; Visual responses ; Macaque monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Physiological and anatomical criteria were used to clearly establish the existence of a pretectal relay of visual information to the ipsilateral inferior olive in the macaque monkey. After injection of horseradish peroxidase into the inferior olivary nucleus, retrogradely labelled neurons were found in the nucleus of the optic tract (NOT) and the dorsal terminal nucleus of the accessory optic tract (DTN). The labelled cells were distributed in a sparse band arching below the margin of the brachium of the superior colliculus between the dorsal and lateral borders of the brainstem at the caudal edge of the pulvinar. Various types of cells could be distinguished. More superficially the cells were extremely spindle shaped, cells deeper within the midbrain had more compact somata. NOT-DTN neurons in the same region were also found to respond with short latencies to electrical stimulation of both the inferior olive and the optic chiasm. All neurons in the NOTDTN which were antidromically activated from the inferior olive were also found to have direction specific binocular visual responses. Such neurons were excited by ipsiversive motion and suppressed by contraversive motion, regardless of whether large area random dot stimuli moved across the visual field or small single dots moved across the fovea. Direct retinal input to these neurons was via slowly conducting fibers (3–9 m/s) from the monkey's optic tract conduction velocity spectrum. As shown previously for non-primates, NOT-DTN cells may also in the monkey carry a signal representing the velocity error between stimulus and retina (retinal slip), and relay this signal into the circuitry mediating the optokinetic reflex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 40 (1980), S. 448-456 
    ISSN: 1432-1106
    Keywords: Optokinetic reflex ; Vestibulo-ocular reflex ; Rabbit ; Visual-vestibular interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The horizontal and vertical monocular optokinetic reflexes of the rabbit were measured under closed-loop and open-loop conditions. A random noise, optokinetic stimulus subtending 70×70 deg was presented to the left eye of rabbits placed in front of a rear projection tangent screen. The position of the right eye (nonstimulated) was measured using an infrared light projection technique. During open-loop optokinetic stimulation the eye position signal was fed back to sum with a time-integrated velocity command signal driving the optokinetic stimulus. The dynamics of eye movements evoked by horizontal and vertical optokinetic stimulation were different. Horizontally evoked eye movements never exceeded a deviation of 15 deg before being interrupted by resetting saccades, which returned the eye past the primary position. By contrast, vertical eye deviations greater than 20 deg were often maintained for intervals exceeding 10 s without resetting. The closed-loop gain of optokinetically evoked horizontal eye movements was higher for monocular posterior-anterior optokinetic stimulation than for anterior-posterior stimulation. The vertical optokinetic gain for up-down stimulation was slightly greater than the gain for down-up stimulation. The vertical up-down, open-loop optokinetic gain was greater than the down-up gain over a range of retinal slip velocities of 0.5–5.0 deg/s. Measurement of the horizontal vestibulo-ocular reflex during simultaneous horizontal optokinetic stimulation demonstrated that visual and vestibular information combine linearly to produce reflex eye movements. These data suggest that the higher gain of the horizontal optokinetic reflex may compensate in part for the reduced gain of the horizontal vestibulo-ocular reflex at lower angular accelerations of the head. An equivalent vertical optokinetic gain would be obviated by the contribution of the utricular otoliths to the vertical vestibulo-ocular reflex at low frequencies of head movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...