Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Molecular microbiology 47 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Myxococcus xanthus cells respond to blue light by producing carotenoids. Light triggers a network of regulatory actions that lead to the transcriptional activation of the carotenoid genes. By screening the colour phenotype of a collection of Tn 5-lac insertion mutants, we have isolated a new mutant devoid of carotenoid synthesis. We map the transposon insertion, which co-segregates with the mutant phenotype, to a previously unknown gene designated here as carF . An in frame deletion within carF causes the same phenotype as the Tn 5 - lac insertion. The carF deletion prevents the activation of the normally light-inducible genes, without affecting the expression of any of the regulatory genes known to be expressed in a light-independent manner. Until now, the switch that sets off the regulatory cascade had been identified with light-driven inactivation of protein CarR, an antisigma factor. The exact mechanism of this inactivation has remained elusive. We show by epistatic analysis that the carF gene product participates in the light-dependent inactivation of CarR. The predicted CarF amino acid sequence reveals no known prokaryotic homologues. On the other hand, CarF is remarkably similar to Kua, a family of proteins of unknown function that is widely distributed among eukaryotes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 56 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Copper induces a red pigmentation in cells of the bacterium Myxococcus xanthus when they are incubated in the dark, at suboptimal growth conditions. The colouration results from the accumulation of carotenoids, as demonstrated by chemical analysis, and by the lack of a copper effect on M. xanthus mutants affected in known structural genes for carotenoid synthesis. None of several other metals or oxidative agents can mimic the copper effect on carotenoid synthesis. Until now, blue light was the only environmental agent known to induce carotenogenesis in M. xanthus. As happens for the blue light, copper activates the transcription of the structural genes for carotenoid synthesis through the transcriptional activation of the carQRS operon. This encodes the ECF sigma factor CarQ, directly or indirectly responsible for the activation of the structural genes, and the anti-sigma factor CarR, which physically interacts with CarQ to blocks its action in the absence of external stimuli. All but one of the other regulatory elements known to participate in the induction of carotenoid synthesis by blue light are required for the response to copper. The exception is CarF, a protein required for the light-mediated dismantling of the CarR–CarQ complex. In addition to carotenogenesis, copper induces other unknown cellular mechanisms that confer tolerance to the metal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Myxococcus xanthus, a member of the Proteobacteria delta-class, has two independent recA genes, recA1 and recA2, but only recA2 is DNA damage-inducible. The lexA gene has been isolated from M. xanthus by PCR amplification with oligonucleotides designed after sequence identification by tblastn analysis of its genome at the Cereon Microbial Sequence Database. The M. xanthus purified LexA protein is shown to bind specifically to the consensus sequence CTRHAMRYBYGTTCAGS present upstream of lexA and recA2. A degenerate copy of this motif but with important differences can be identified in the region upstream of the recA1 gene. A knock-out lexA(Def) mutant that has been generated does not differ significantly from wild type in morphology, growth rate, light-induced carotenogenesis or development. Using transcriptional lacZ fusions and quantitative RT-PCR analysis, it has been demonstrated that expression of both lexA and recA2 genes is constitutive in the lexA(Def) mutant, whereas the transcription of the DNA damage non-inducible recA1 gene is not affected in this strain. recN and ssb, whose expression in Escherichia coli are LexA-regulated, are induced by DNA damage in the M. xanthus lexA(Def) mutant. These data reveal the existence of different regulatory mechanisms for DNA damage-inducible genes in bacteria belonging to different phyla.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 10 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Blue light activates carotenoid production in the non-photosynthetic, Gram-negative bacterium Myxococcus xanthus. Light is known to stimulate the expression of two unlinked genes for carotenoid synthesis, carB and carC, through a mechanism in which the regulatory genes carA, carQ and carR take part. Genes carQ and carR are linked together at a separate locus, whereas carA is linked to carB. We have introduced Tn5 at various sites between carA and carB. Chemical analyses of the mutant strains demonstrate the presence in this region of a cluster of genes for carotenoid synthesis. Gene expression analysis strongly argues for most (or all) of the genes in the cluster being transcribed from a single, light-inducible promoter under the control of genes carA, carQ and carR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Myxococcus xanthus ; Blue light ; Carotenoid mutants ; Phytoene ; Feed-back control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Accumulation of carotenoids in Myxococcus xanthus is absolutely dependent on illumination with blue light. We report the analysis of the carotenoids of dark- and light-grown cultures of the wild type and several previously characterized mutants. A carR mutant produces the same carotenoids in the dark as the wild type grown in the light. This agrees with previous evidence indicating that the carR gene codes for a general negative regulator of the system. A cis-dominant mutation in the gene carA causes constitutive expression of the light-inducible gene carB, which is linked to carA. In the dark, the carA mutant produces high levels of phytoene, the first C40 colourless carotenoid precursor; in the light, it produces the same carotenoids as the wild type. Since a mutation in carB blocks accumulation of phytoene, we propose that carB, and probably other linked genes also controlled by carA, code for enzymes involved in the synthesis of phytoene. This is virtually the only carotene accumulated by strains mutated in the gene carC, which is unlinked to the others. Thus carC codes for phytoene dehydrogenase, the enzyme that converts phytoene into coloured carotenoids. The results presented here also provide evidence for control of carotenogenesis by an endproduct that is independent of the blue light effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...