Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-6041
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 335 (1980), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell biology and toxicology 1 (1985), S. 213-221 
    ISSN: 1573-6822
    Keywords: cytotoxicity ; glutathione ; hyperthermia ; pool size
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Intracellular glutathione (GSH) concentrations were titrated in Chinese hamster ovary cells by exposure to various concentrations of diethylmaleate (DEM). The various steady state levels of GSH obtained were maintained throughout the experimental time course. Cells were incubated at 42° after DEM addition in order to produce thermal dose response curves using colony formation as the end point. The slope of the dose response curve was subsequently determined and compared to the intracellular GSH concentration. This comparison indicated Chinese hamster ovary cells contain multiple reservoirs of GSH which in turn regulate thermal toxicity in a stepwise manner. Removal of 50% or less of the GSH did not affect thermal sensitivity. A small increase in sensitivity occured when 50 to 80% of the GSH was removed. Removal of greater than 80% of the GSH increased thermal toxicity significantly. The facts that 10 and 20 µM DEM produce extensive GSH depletion and only small changes in survival imply that a threshold concentration of GSH must be removed before thermal toxicity is affected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-7373
    Keywords: brainstem gliomas ; hyperfractionated radiotherapy ; chemoradiotherapy ; peripheral stem cell harvesting ; radio sensitizers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This article will review the current treatment of pediatric patients with diffuse pontine gliomas (DPG) and discuss three potential avenues of therapeutic research including (i) radiotherapy (RT) in combination with radiation sensitizers, (ii) dose-intensive, induction chemotherapy with hematopoietic support followed in sequence with RT applied as a ‘consolidation’ therapy, and (iii) the interleafed application of phase-specific chemotherapeutic agents and hyperfractionated external beam radiotherapy (HFEBRT) referred to as ‘chemoradiotherapy’.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The diazenecarbonyl derivative, diamide, was used to produce nonnative protein disulfides in Chinese hamster ovary cells in order to characterize the events that occur during thiol oxidation-induced denaturation that trigger induction of Hsp 70. We limit the term protein denaturation to a process involving a conformational rearrangement by which the ordered native structure of a protein changes to a more disordered structure. Protein thiol oxidation resulted inimmediate destabilization of proteins, as assessed by differential scanning calorimetry (DSC). The DSC profile indicated both a decrease in the onset temperature for detection of denaturation and destabilization of a class of proteins with an average transition temperature (Tm) of 60°C. Concomitant with destabilization was an increase in proteins associated with isolated nuclei. Thiol oxidation also induced heat shock transcription factor (HSF) binding activity, however, this was nearly undetectable immediately following diamide treatment: maximum activation occurred 3 hr following exposure. In contrast, heat shock denatured thermolabile proteins which exhibited a Tm of 48°C. Heat shock also resulted in a rapid increase in proteins associated with isolated nuclei and produced immediated and maximum activation of HSF binding. The accumulation of Hsp and Hsc 70 mRNA following thiol oxidation reflected the delay in HSF binding. Acquisition of HSF binding activity occurred immediately if diamide-treated cells were subsequently exposed to a heat shock, indicating that HSF was not inactivated by the diamide treatment. Ostensibly, the cellular system for detecting denatured/abnormal proteins failed to immediately recognize the signal generated by thiol oxidation. These results suggest that at least two processes are involved in the induction of Hsp 70 by nonnative disulfide bond formation: destabilization of protein structure resulting in denaturation and recognition of denatured protein. © 1995 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 483-492 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Treatment with the sulfhydryl oxidant diamide denatures and aggregates cellular proteins, which prior studies have implicated as an oxidative damage that activates the heat shock transcription factor and induces thermotolerance. This study was initiated to further characterize cellular response to diamide-denatured proteins, including their involvement in diamide cytotoxicity. Cytotoxic diamide exposures at 37.0°C denatured and aggregated cellular proteins in a manner that was proportional to cell killing, but this correlation was different than that established for heated cells. Diamide exposures at 24.0°C were orders of magnitude less cytotoxic, with little additional killing occurring after diamide was removed and cells were returned to 37.0°C. Thus, protein denaturation that occurred at 37.0°C, after proteins were chemically destabilized by diamide at 24.0°C [Freeman et al., J. Cell. Physiol., 164:356-366 (1995) Senisterra et al., Biochemistry 36: 11002-11011 (1997)], had little effect on cell killing. Thermotolerance protected cells against diamide cytotoxicity but did not reduce the amount of denatured and aggregated protein observed immediately following diamide exposure. However, denatured/aggregated proteins in thermotolerant cells were disaggregated within 17 h following diamide exposure, while no disaggregation was observed in nontolerant cells. This more rapid disaggregation of proteins may be one mechanism by which thermotolerance protects cells against diamide toxicity, as it has been postulated to do against heat killing. As with heat shock, nontoxic diamide exposures induced maximal tolerance against heat killing; however, there was no detectable, increased synthesis of heat shock proteins. Thus, diamide treatment proved to be a reproducible procedure for inducing a phase of thermotolerance that does not require new heat shock protein (HSP) synthesis, without having to use transcription or translation inhibitors to suppress HSP gene expression.These results complement those from studies with other stresses to establish the importance of protein denaturation/aggregation as a cytotoxic consequence of stress and a trigger for thermotolerance induction. The data also illustrate that differences in how proteins are denatured and aggregated can affect their cytotoxicity and the manner in which thermotolerance is expressed. J. Cell. Physiol. 177:483-492, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...