Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Physiologia plantarum 119 (2003), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Glutathione transferases (GSTs) are ubiquitous, multifunctional proteins encoded by large gene families. In different plant species this gene family is comprised of 25–60 members, that can be grouped into six classes on the basis of sequence identity, gene organization and active site residues in the protein. The Phi and Tau classes are the most represented and are plant specific, while Zeta and Theta GSTs are found also in animals. Despite pronounced sequence and functional diversification, GSTs have maintained a highly conserved three-dimensional structure through evolution. Most GSTs are cytosolic and active as dimers, performing diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. Among their catalytic activities are the conjugation of electrophilic substrates to glutathione, glutathione-dependent isomerizations and reductions of toxic organic hydroperoxides. Their main non-catalytic role is as hormone and flavonoid ligandins. GST genes are predominantly organized in clusters non-randomly distributed in the genome. Phylogenetic studies indicate that plant GSTs have mainly evolved after the divergence of plants, the two prevalent Phi and Tau classes being the result of recent, multiple duplication events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Key words Maize ; Herbicide ; Molecularmarkers ; Gametophytic selection ; Linkage analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Genetic factors controlling tolerance to the herbicide Alachlor in maize were localised by means of two different strategies. In the first approach, backcross (BC) plants, derived from pollen which had been subjected to selective pressure for resistance to the herbicide, were analysed for segregation distortion at 47 RFLP loci and compared to BC plants obtained from non-selected pollen. Preferential transmission of five chromosomal regions where putative QTLs (Quantitative Trait Loci) are localised was revealed in the BC plants from selected pollen. A second approach was based on a classical linkage analysis for segregation of the same set of RFLPs and factors controlling the trait, in a BC population of 210 individuals, by means of regression analysis. This study detected seven significant loci in four genomic regions. Overall, two loci revealed both segregation distortion and association with the expression of the trait, indicating linkage to genes expressed in both gametophytic and sporophytic phase. Three chromosomal regions appeared to carry factors involved in plant tolerance to Alachlor which are not expressed in pollen. Conversely, three loci were linked to factors selectable in pollen, but did not reveal significant association with tolerance in the plant in the segregating populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 3 (1990), S. 200-206 
    ISSN: 1432-2145
    Keywords: Pollen development ; Gene expression ; Pollen-style interactions ; Isozymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During pollen formation within anthers of Zea mays, post-meiotic expression of the cat-3 gene was observed from soon after microspore release from the tetrads until microspore mitosis; from the binucleate stage to maturity the cat-1 gene was expressed instead. Gene expression during pollen function, i.e., germination and tube growth, was determined by means of a new approach based on the in vivo comparative analysis of pollinated and non-pollinated silks. In the early autotrophic stage of germinating pollen ADH-1, CAT-1, and GOT-1 were expressed, whereas during further tube elongation only GOT-1 was detected. Pollination did not give rise to pollen-style hybrid enzymatic molecules nor to the induction of new enzymes on either partner. Silks, even when non-pollinated, showed the expression of additional alcohol dehydrogenase and catalase enzymatic activities, specifically ADH-2 and CAT-3. These data support the view that expression of the catalase system in the male gametophyte is stage specific, and suggest that the style may provide support to the elongating pollen tube at the functional as well as at the nutritional level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5060
    Keywords: Zea mays ; glutathione-S-transferase ; glutathione ; herbicide tolerance ; gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Crop improvement for tolerance to specific herbicides is an important breeding target, since molecules performing well with regard to environmental safety are frequently not completely selective for crops. The glutathione (GSH)/glutathione-S-transferase (GST) system is a general mechanism of detoxification that in higher plants may confer tolerance to some herbicides. GSH level and GST activity were measured in different maize inbred lines, in the absence or in the presence of EPTC (a thiocarbamate) and of Alachlor (a chloroacetanilide); a wide genetic variability was observed for these parameters, which appear to be involved in plant tolerance to herbicides. Isozyme analysis was performed on roots, leaves, scutellum, pollen, coleoptile, mesocotyl of the same inbreds: it revealed the presence of many GST forms in maize, showing high polymorphism; they are controlled by at least five genes, the expression of which is developmentally regulated in the different tissues analyzed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9788
    Keywords: Alachlor ; herbicide tolerance ; maize ; RFLP ; SSR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In order to detect the genetic architecture of maize tolerance to Alachlor, a widely used chloroacetanilide, linkage analysis between the expression of the trait and allelic composition of molecular markers was performed. The experiment was carried out on a population of 142 recombinant inbred lines, developed starting from the F1 between two lines with different reactivity to the herbicide, and self-fertilized for 10 generations; the lines were typed by 48 RFLP markers and 66 microsatellites (SSR). Besides seedling tolerance, evaluated as proportion of normal (non-injured) plants after herbicide treatment, other minor components of tolerance were studied: seed germination ability, pollen germination and tube growth in the presence of the herbicide. The analysis, performed by three statistical methods, revealed the presence of factors controlling seedling tolerance on seven chromosomal regions. Five QTLs appeared to be involved in seed germination ability in the presence of Alachlor, four QTLs in pollen tolerance in terms of germination and four in tube growth under stress were detected. Three loci, on chromosomes 1, 7 and 10, explained most of the variation of seedling tolerance, thus being interesting candidate for marker-assisted selection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 245 (1994), S. 424-430 
    ISSN: 1617-4623
    Keywords: Pollen thermotolerance ; Maize ; Quantitative trait loci (QTLs) ; RFLP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pollen thermotolerance is an important component of the adaptability of crops to high temperature stress. The tolerance level of the different genotypes in a population of 45 maize recombinant inbred lines was determined as the degree of injury caused by high temperature to pollen germinability (IPGG) and pollen tube growth (IPTG) in an in vitro assay. Both traits revealed quantitative variability and high heritability. The traits were genetically dissected by the analysis of molecular markers using 184 mapped restriction fragment length polymorphisms (RFLPs). Significant genetic correlation between the markers and the trait allowed us to identify a minimum number of five quatitative trait loci (QTLs) for IPGG and six QTLs for IPTG. Their chromosomal localization indicated that the two characters are controlled by different sets of genes. In addition, IPGG and IPTG were shown to be basically independent of the pollen germination ability and pollen tube growth rate under non-stress conditions. These results are discussed in relation to their possible utilization in a breeding strategy for the improvement of thermotolerance in maize.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 10 (1989), S. 324-332 
    ISSN: 0192-253X
    Keywords: Heat-shock proteins ; Pollen ; Development ; Maize ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In contrast to sporophytic tissues, mature pollen of higher plants does not synthesize the typical set of heat-shock proteins (HSPs) in response to a marked temperature upshift. Immature grains, however, seem able to do so, at least partially. We investigated the characteristics of HSP synthesis throughout the male gametophytic phase in maize and compared gametophytic and sporophytic heat-shock responses. One-dimensional Sodium dodecyl sulfate-polyacryl-amide gel electrophoresis technique (SDS-PAGE) of newly synthesized proteins revealed that immature pollen synthesizes HSPs, some of which are not induced in sporophytic tissues. The heat-shock response appeared to be related to microgametophytic developmental stages. The strongest response was found in uninucleate microspores: at this stage, in addition to the sporophytic 102, 84, 72, and 18 kD HSPs, three other polypeptides of 74, 56, and 46 kD were observed. In the binucleate and trinucleate stages, only a reduced synthesis of few HSPs could be induced, and differences between genotypes were observed. In germinating pollen, HSP synthesis was not induced under a voriety of heat-stress conditions; however, the consti-tutive synthesis of two polypeptides of the same molecular weight, 72 and 64 kD, as two HSPs was observed. The biological significance of these results is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...