Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8781
    Keywords: drug discovery ; CellChip ; high content screening ; fluorescence ; patterning ; sensors ; microarrays ; bioinformatics ; tissue engineering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract A major bottleneck to the early stages of drug discovery is the absence of integration of high throughput screening (HTS) with smarter assays that screen “hits” from HTS to identify leads (High content screening, HCS). We propose a solution using novel fluorescent engineered protein biosensors integrated into a miniaturized live-cell-based screening platform (CellChip™ System) that markedly shortens the early drug discovery process. Microarrays of selectively localized living cells, containing engineered fluorescent biosensors, serve to integrate HTS and HCS onto a single platform. HTS “hits” are identified using one biosensor while reading the whole chip array of cells. The high-biological content information is then obtained from probing target activity at inter-cellular, sub-cellular and molecular levels in the “hit” wells. HCS assays yield temporal-spatial dynamic maps of the drug-target interaction within each living cell. We predict that a new platform incorporating HTS and HCS assays that are automated, miniaturized, and information-rich will dramatically improve the decision making process in the pharmaceutical industry and optimize lead compounds during the early part of the drug discovery process. There is an opportunity to establish a new paradigm for drug discovery based on integration of fluorescence technology, micropatterning of living cells, automated optical detection and data analysis, and a new generation of knowledge building bioinformatics approaches. The technology will have an expansive impact spanning the fields of drug discovery, biomedical research, environmental monitoring, life sciences, and clinical diagnostics. The integrated CellChip™ Platform with miniaturized tissue-specific microarrayed cells capable of providing inter-cellular and sub-cellular spatio-temporal information in response to drug-cell, toxin-cell, or pathogen-cell interactions will serve to enhance the decision making process in drug discovery, toxicology, and clinical diagnostics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 16 (1990), S. 14-21 
    ISSN: 0886-1544
    Keywords: mitogenesis ; cytoskeletal dynamics ; actin ; myosin II ; fluorescent analog cytochemistry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Swiss mouse 3T3 fibroblasts grown on a solid substrate in the presence of 10% serum exhibit cell movement, organelle transport, and cytokinesis. When the serum concentration in the culture medium is decreased to 0.2% for 48 h the serum-deprived cells virtually stop locomoting, spread, decreased organelle transport, and exhibit extensive arrays of stress fibers that are visible with video-enhanced differential interference contrast microscopy and that also incorporate fluorescent analogs of actin and conventional myosin (myosin II). The stress fibers form in a constitutive mannet at the cytoplasm-membrane interface, transport toward the nucleus, and then disappear. The rate of transport of these fibers is quite heterogeneous with average rates in the range of 10-20 μm/h. When serum-deprived cells are stimulated with mitogens such as 10% serum or 10 nM thrombin, many of the stress fibers immediately begin to shorten, suggesting a contraction. The rate of shortening is approximately two orders of magnitude slower than that of unloaded smooth muscle cells. The fiber shortening is often accompanied by retraction of the edges of the cell and continues for at least the 1st hour post-stimulation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...