Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 633 (1991), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 279 (1979), S. 720-721 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We used conventional methods, which are described in detail elsewhere, to record intracellular electrical activity and to evoke the slow e.p.s.p. in myenteric ganglion cells of guinea pig small intestine3. Substance P from three different sources (Beckman, Serva and Sigma) and methysergide (Sandoz) ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 393 (1982), S. 297-301 
    ISSN: 1432-2013
    Keywords: Lithium ; Ion sensitive microelectrode ; Intracellular lithium ; Motoneurons ; Spinal cord ; Frog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Lithium sensitive microelectrodes were used to investigate the transmembrane distribution of lithium ions (Li+) in motoneurons of the isolated frog spinal cord. After addition of 5 mmol·l−1 LiCl to the bathing solution the extracellular diffusion of Li+ was measured. At a depth of 500 μm, about 60 min elapsed before the extracellular Li+ concentration approached that of the bathing solution. Intracellular measurements revealed that Li+ started to enter the cells soon after reaching the motoneuron pool and after up to 120 min superfusion, an intra — to extracellular concentration ratio of about 0.7 was obtained. The resting membrane potential and height of antidromically evoked action potentials were not altered by 5 mmol·l−1 Li+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Cell volume ; Motoneuron ; Spinal cord ; Amino acids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract One type of ion-sensitive micro-electrode (K+ ligand Corning 477317) is sensitive to large quaternary ammonium ions such as choline or tetramethylammonium (TMA+). We have now used such electrodes for continuous electrophysiological measurements of changes in cell volume of motoneurons in the isolated frog spinal cord. The electrodes were double-barrelled with tip diameters of 1 μm. The reference barrel was filled with 100 mM choline or 100 mM TMA+ in 1 M Mg2+-acetate, the sensitive barrel contained the Corning K+ ligand. After the impalement of a motoneuron, choline or TMA+ diffused into the cell and about 1 h later, a steady-state concentration of these ions in the range of 10–20 mM was reached. Following this period, the motoneurons were activated by repetitive electrical stimulation or by application of amino acids via the bathing solution. All these stimuli led to a transient rise of the intracellular concentrations of choline or TMA+ (indicating a cell shrinkage of 3–10% difference to control volume).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 301 (1977), S. 129-134 
    ISSN: 1432-1912
    Keywords: Guanidine ; Transmitter ; Spinal Cord ; Amyotrophic lateral sclerosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of guanidine on motoneurons of the isolated frog spinal cord were studied by adding the drug to the solution bathing the cord during intracellular recording. Guanidine (5·10−4 M) did not alter the membrane potential of motoneurons. The main effect was a marked increase of the amplitudes and frequencies of small spontaneously occurring inhibitory postsynaptic potentials. The hyperpolarizing component of postsynaptic potentials evoked by stimulation of dorsal roots was also enhanced by guanidine. Higher concentrations of guanidine (5·10−3 M) resulted in a very large and irreversible increase of the small spontaneously occurring inhibitory potentials, which now appeared in a regular, rhythmic pattern. The effects of guanidine could easily be blocked by increasing the magnesium ions (15 mM) in the bath solution. These results indicate that guanidine facilitates the release of an inhibitory transmitter in afferent terminals of the frog spinal cord either by a direct action on these terminals or indirectly by an action on nerve endings impinging on inhibitory interneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 339 (1989), S. 327-331 
    ISSN: 1432-1912
    Keywords: Cromakalim ; K+-channels ; Tolbutamide ; Human skeletal muscle ; Hyperkalaemic periodic paralysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of the present study was to analyze the effects of cromakalim (BRL 34915), a potent drug from a new class of drugs characterized as “K+ channel openers”, on the electrical activity of human skeletal muscle. Therefore, intracellular recordings were used to measure the effects of cromakalim on the membrane potential and input conductance of fibres from human skeletal muscle biopsies. Cromakalim in a concentration above 1 μmol/l induced an increase in membrane K+ conductance. This effect resulted in a membrane hyperpolarization. The magnitude of this polarization depended on the difference between resting and K+ equilibrium potential. The effect had a rapid onset and was quickly reversible after washing. Fibres from two patients with hyperkalaemic periodic paralysis showed an excessive membrane depolarization during and also after exposure to an slightly elevated extracellular K+ concentration. In the latter situation, cromakalim repolarized the fibres to the normal resting potential. Tolbutamide (1 mmol/l) and Ba2+ (3 mmol/l) strongly antagonized the effect of cromakalim. The data show that cromakalim hyperpolarizes depolarized human skeletal muscle fibres maintained in vitro. The underlying mechanism is probably an activation of otherwise “silent”, ATP-regulated K+ channels. Such an effect may be of therapeutic benefit in a situation in which a membrane depolarization causes muscle paralysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 314 (1980), S. 141-147 
    ISSN: 1432-1912
    Keywords: 4-Aminopyridine ; GABA ; Sympathetic ganglion ; Presynaptic receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses to bath-applications of 4-aminopyridine (4-AP) and γ-aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked “bursts” of spikes and EPSPs in addition to a neuronal depolarization. These “bursts”, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 299 (1982), S. 252-254 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The experiments were performed on transverse slices (400-600 |xm thick) of guinea pig hippocampus. The slices were kept either half or totally immersed (see below) in an experimental chamber perfused with a solution containing (in mM): NaCl, 123; KC1, 3.0; CaCl2, 2.0; MgSO4, 2.0; NaHCO3, 26; ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: sodium channel ; axon ; glutathione ; metabolism ; reducing agent ; cysteine ; disulfide bridges
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of glutathione were studied on the gating behaviour of sodium channels in membrane patches of rat axons. Depolarizing pulses from −120 to −40 mV elicited sodium currents of up to 500 pA, indicating the simultaneous activation of up to 250 sodium channels. Inactivation of these channels in the excised, inside-out configuration was fitted by two time constants (τ h1=0.81 ms; τ h2= 5.03 ms) and open time histograms at 0 mV revealed a biexponential distribution of channel openings (τ short=0.28 ms; τ long=3.68 ms). Both, the slow time constant of inactivation and the long lasting single channel openings disappeared after addition of the reducing agent glutathione (2–5 mM) to the bathing solution. Sodium channels of excised patches with glutathione present on the cytoplasmatic face of the membrane had inactivation kinetics similar to channels recorded in the cell-attached configuration. These observations indicate that redox processes may contribute to the gating of axonal sodium channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: Axon ; Peripheral nerve ; Patch clamp ; Ion channels ; Metabolism ; Glutathione ; Iodate ; Monochlorobimane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Na+ channel currents of rat motor and sensory nerve fibres were studied with the patch-clamp technique on enzymatically demyelinated axons. Differences between motor and sensory fibres in multi-channel inactivation kinetics and the gating of late single-channel currents were investigated. In the axon-attached mode, inactivation of multi-channel Na+ currents in sensory axons was best fitted with a single time constant while for motor axons two time constants were needed. Late single-channel currents in sensory axons were characterized by short openings whereas motor axons exhibited additional long single-channel openings. In contrast, in excised, inside-out membrane patches, no differences between motor and sensory fibres were found: in both types of fibre inactivation of multi-channel Na+ currents proceeded with two time constants and late single-channel currents showed short and long openings. After application of the reducing agent glutathione to the cytoplasmic side of excised inside-out patches, inactivation of Na+ currents in both motor and sensory fibres proceeded with a single, fast exponential time constant and late currents appeared with short openings only. These data indicate that the axonal metabolism may contribute to the different inactivation kinetics of Na+ currents in motor and sensory nerve fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...