Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 38 (1989), S. 147-162 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The fusion welding behavior of a medium density polyethylene resin has been studied for a wide range of heating rates using a recently developed test methodology. With this method, the thermal and physical phenomena occurring at the interface of two thin polyethylene pieces assembled by fusion can be studied. It consists of a thermal welding phase and a phase of mechanical separation of the welded assembly. For the mechanical phase, an adaptation of the T-peel test was used. These conditions make it possible to determine the thermal welding parameters (temperature, time) for optimal mechanical quality of the joint, according to a criterion established by optimization of the peel test used. The variations in minimum temperature required for an optimum weld, as a function of heating rate, can be simulated with a numerical model based on the concept of macromolecular interdiffusion. Consistent with the experimental behavior, the numerical model involves two parameters characteristic of the diffusion behavior of the polyethylene resin. Thus, these parameters characterize the weldability of the polyethylene resin under study.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 35 (1988), S. 1683-1694 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Thermal history of a polyethylene-welded assembly has been determined by measuring the crystallinity via absorbance ratio (ROD) measurements. Fourier transform infrared microspectrometry has been used because it allows a space-localized analysis within a diameter of 200 μm. A linear relation between ROD and local crystallinity has been obtained using reference samples for calibration. Samples were calibrated by differential thermal analysis and density measurements. This relationship and the simulation of the various thermal treatments by calorimetric analysis allow us to characterize the different phases of the thermal history during the welding experiment.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 60 (1996), S. 1201-1208 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: To study how the properties of extruded medium-density polyethylene products are influenced by the microstructure, rodlike samples, whose morphology can be changed under appropriate processing conditions, were produced by extrusion. A special extrusion line was developed consisting of an extruder equipped with a cylindrical die, thermal separator, lubrication unit, and cooling die. A wide range of representative morphologies was achieved using various temperatures of polymer melt and of the cooling die (calibration unit). A significant structural gradient, determined by differential scanning calorimetry (DSC), was found in all extruded rods, depending on the thermal conditions. The molecular orientation through the section of the rods, resulting from the shear during the extrusion, was determined by Fourier transform infrared (FTIR) spectroscopy and by thermal relaxation, showing good agreement between both methods. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...