Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1741-2765
    Keywords: automated photoelasticity ; spectral analysis ; genetic algorithm ; maximum entropy ; computational methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Over the past 10 years, spectral analysis has been shown to have the potential to be a reliable means of automating photoelasticity. However, the four methods of analyzing the spectra that have previously been proposed are slow and, in some cases, inaccurate. This paper describes three new methods for spectral analysis based on the maximum entropy method, a genetic algorithm and a memetic algorithm. Thirty-five spectra for known fringe orders were recorded and used in testing the four existing methods and the three new ones. It was found that the new methods were all considerably faster than the existing methods, although less accurate than the best existing method. By combining the maximum entropy method with either the genetic algorithm or the memetic algorithm, spectra could be analyzed up to 30 times as fast as they could with any of the existing methods and with comparable accuracy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 32 (1992), S. 266-272 
    ISSN: 1741-2765
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The complete birefringence, or isochromatic fringe order, in stress-frozen photoelastic models has been found by measuring the spectral contents of idividual points. A calibration procedure is porposed. The effects of nonuniform birefringence and dispersion of birefringence are considered. The results are presented from the analysis of models of a plate with a central hole and a disk subject to three radial loads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental mechanics 36 (1996), S. 269-276 
    ISSN: 1741-2765
    Keywords: photoelasticity ; three-dimensional ; automation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A procedure for the separation of full-field photoelastic images for use with an automated polariscope is described. Regions of background in the image are identified thus producing the boundary of the model. The shear difference method is used to calculate the components of stress along all raster lines in the image using photoelastic parameters at the boundary points to calculate the initial values of stress. Algorithms were also used to evaluate the stress components along raster lines which did not contain boundary points. A plastic template was used to evaluate the efficiency of the boundary routine. It was found that it was able to identify edges to within approximately one pixel on screen. The complete procedure for stress separation was evaluated using a stress frozen disc in compression and a turbine slot. The values of stress found using the automated polariscope with the stress-separation procedure were found to agree well with theory and with results determined using the method of Tardy compensation and manual analysis. The automated polariscope was also used to analyze three-dimensional stress components along arbitrary lines of a 3D model. A two-model slicing regime was used to analyze a strut subjected to a vertical load. This work was compared to results obtained by Frocht and Guernsey on an identical model machined from Fosterite and subjected to a higher load. Good agreement was found between the results for points away from the region of loading. Significant differences were found near to the load point, however. A finite element analysis of the same problem suggested that this was due to the effects of plasticity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...