Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5087
    Keywords: gas chromatography ; mass spectrometry ; 1-aminocyclopropane-1-carboxylic acid ; 1-(malonylamino)cyclopropane-1-carboxylic acid ; Lycopersicon esculentum Mill.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Since the discovery of1-(malonylamino)cyclopropane-1-carboxylic acid (MACC)as a major metabolite of both endogenous andexogenously applied 1-aminocyclopropane-1-carboxylicacid (ACC), it has become evident that the formationof MACC from ACC can act to regulate ethyleneproduction in certain tissues. Hence it was suggestedthat MACC could serve as an indicator of water-stresshistory in plant tissues. The accurate quantificationof MACC in plant tissues is essential forunderstanding the role of MACC in the regulation ofethylene biosynthesis.Hoffman et al. [15] described a method for themeasurement of MACC in which MACC was hydrolysed byHCl to ACC, which was then assayed by chemicaloxidation to form ethylene. Attempts have been made byothers to raise monoclonal antibodies to MACC so thatan immunoassay could be developed in order to gain adeeper understanding of stress-induced ethyleneproduction but no further publications have beenforthcoming.Here a method employing GC-MS is compared with theindirect assay for MACC, which is based uponhydrolysis of MACC to ACC and conversion of ACC byhypochlorite reagent to ethylene which is subsequentlyquantified by GC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7632
    Keywords: metabolome ; tomato fruit ; salinity ; Fourier transform infra-spectroscopy (FTIR) ; chemometrics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Genetic programming, in conjunction with advanced analytical instruments, is a novel tool for the investigation of complex biological systems at the whole-tissue level. In this study, samples from tomato fruit grown hydroponically under both high- and low-salt conditions were analysed using Fourier-transform infrared spectroscopy (FTIR), with the aim of identifying spectral and biochemical features linked to salinity in the growth environment. FTIR spectra of whole tissue extracts are not amenable to direct visual analysis, so numerical modelling methods were used to generate models capable of classifying the samples based on their spectral characteristics. Genetic programming (GP) provided models with a better prediction accuracy to the conventional data modelling methods used, whilst being much easier to interpret in terms of the variables used. Examination of the GP-derived models showed that there were a small number of spectral regions that were consistently being used. In particular, the spectral region containing absorbances potentially due to a cyanide/nitrile functional group was identified as discriminatory. The explanatory power of the GP models enabled a chemical interpretation of the biochemical differences to be proposed. The combination of FTIR and GP is therefore a powerful and novel analytical tool that, in this study, improves our understanding of the biochemistry of salt tolerance in tomato plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...