Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 14 (1998), S. 305-338 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The actin cytoskeleton is a highly dynamic network composed of actin polymers and a large variety of associated proteins. The main functions of the actin cytoskeleton are to mediate cell motility and cell shape changes during the cell cycle and in response to extracellular stimuli, to organize the cytoplasm, and to generate mechanical forces within the cell. The reshaping and functions of the actin cytoskeleton are regulated by signaling pathways. Here we broadly review the actin cytoskeleton and the signaling pathways that regulate it. We place heavy emphasis on the yeast actin cytoskeleton.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 45 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Saccharomyces cerevisiae, the small GTPase RHO1 plays an essential role in the control of cell wall synthesis and organization of the actin cytoskeleton. Several regulators for RHO1 are known, including the GTPase-activating proteins (GAPs) SAC7 and BEM2. Here we show that BAG7, identified as the closest homologue of SAC7, also acts as a GAP for RHO1 in vitro and in vivo. Furthermore, we find that BAG7, SAC7, and BEM2 are functionally different in vivo. Overexpression of BAG7 or SAC7, but not BEM2, suppresses the cold sensitivity of a sac7 mutation and the lethality of RHO1 hyperactivation in response to cell wall damage. In contrast, overexpression of BEM2 or SAC7, but not BAG7, downregulates the RHO1-controlled PKC1-MPK1 pathway, and disruption of BEM2 or SAC7, but not BAG7, results in increased MPK1 activation. We conclude that BEM2 and SAC7, but not BAG7, are involved in the control of the RHO1-mediated activation of MPK1, whereas BAG7 and SAC7, but not BEM2, are involved in the regulation of other RHO1 functions. This suggests that different RHO1 GAPs control different RHO1 effector pathways, thus ensuring their individual regulation at the appropriate place and time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The immunosuppressive drug rapamycin binds to the peptidyl-prolyl cis-trans isomerase FKBP12, and this complex arrests growth of yeast cells and activated T lymphocytes in the G1 phase of the cell cycle. In yeast, loss-of-function mutations in FPR1, the gene encoding FKBP12, or dominant gain-of-function mutations in TOR1 and TOR2, the genes encoding the physical targets of the FKBP12–rapamycin complex, confer rapamycin resistance. Here, we report the cloning and characterization of a novel gene, termed FAP1, which confers resistance to rapamycin by competing with the drug for binding to FKBP12. FAP1 encodes a member of an evolutionarily conserved family of putative transcription factors that includes human NF-X1, Drosophila melanogaster shuttle craft and previously undescribed homologues in Caenorhabditis elegans, Arabidopsis thaliana and Schizosaccharomyces pombe. We provide genetic and biochemical evidence that FAP1 interacts physically with FKBP12 in vivo and in vitro, and that it competes with rapamycin for interaction. Furthermore, mutations in the FKBP12 drug binding/active site or surface residues abolish binding to FAP1. Our results suggest that FAP1 is a physiological ligand for FKBP12 that is highly conserved from yeast to man. Furthermore, prolyl isomerases may commonly bind and regulate transcription factors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 402 (1999), S. 689-692 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The rapamycin-sensitive TOR signalling pathway in Saccharomyces cerevisiae activates a cell-growth program in response to nutrients such as nitrogen and carbon. The TOR1 and TOR2 kinases (TOR) control cytoplasmic protein synthesis and degradation through the conserved TAP42 protein. Upon ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 295 (1982), S. 616-618 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The 701-708 double mutant was constructed in vivo by homologous recombination within the 26 base pairs (bp) that separate the two mutations. The strategy used in this construction, described in Fig. 3 legend, involved three steps. First, a A transducing phage carrying the lamB-lacZ hybrid gene 52-4 ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 13 (1980), S. 147-163 
    ISSN: 0091-7419
    Keywords: gene fusions ; λ receptor ; major outer membrane proteins ; signal sequence mutations ; ribosome ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In the last few years, several laboratories have demonstrated that many proteins (both from eukaryotic and prokaryotic organisms) that are destined to be localized in noncytoplasmic locations initially are synthesized as a precursor with a 15-30 amino acid extension at the NH2-terminal end of the molecule. This extra peptide has been termed the signal sequence, and it has been proposed that this signal plays a role in the localization of the extracytoplasmic protein. We are studying the process by which proteins are exported to the envelope region of Escherichia coli. Our work deals primarily with the outer membrane proteins, λ receptor, the product of the lamB gene, and the major outer membrane (porin) proteins 1a and 1b, products of the ompF and ompC genes.Using techniques of gene fusion, we have demonstrated that information specifying the cellular location of the λ receptor is contained within the lamB gene. Furthermore, we have shown that this information is capable of directing even a normally cytoplasmic protein, β-galactosidase, to the outer membrane. Some of this information is contained within the signal sequence. Mutations that alter this sequence prevent export of the λ receptor protein. Again using techniques of gene fusion, we have shown that the signal sequence alone is not sufficient to cause export of β-galactosidase from the cytoplasm. Other information within the lamB gene is required.Selection procedures have been developed to isolate mutations that exhibit a general alteration in the export process. Genetic analysis of these mutations has provided evidence for the involvement of the ribosome in the process of protein localization.The structural genes for the porin proteins, 1a and 1b, are regulated at the transcriptional level by the ompB locus. This has permitted us to extend our studies on outer membrane protein localization to protein 1. With this genetic system, it should be possible to determine if E coli employs more than a single mechanism for the export of proteins to the outer membrane.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...