Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Inflammation research 8 (1978), S. 400-400 
    ISSN: 1420-908X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 8 (1972), S. 109-132 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Extrinsic fluorescence changes in squid giant axons were examined under a variety of experimental conditions using 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and other fluorescent probes. Measurements of the degree of polarization of the fluorescent light (with the axis of the polarizer parallel to the longitudinal axis of the axon) indicated that the class of the TNS molecules in the axon membrane which participate in production of fluorescence signals have a definite orientation with their absorption and emission oscillators directed parallel to the long axis of the axon. Rectangular depolarizing voltage pulses produced a transient decrease in the fluorescent intensity, of which the early component is correlated tentatively with the rise in the membrane conductance. In response to hyperpolarizing pulses, there was an increase in fluorescence intensity which may be explained in terms of increased incorporation of TNS into the ordered structure in the membrane. Hyperpolarizing responses in KCl depolarized axons were accompanied by a change in fluorescent intensity. Tetrodotoxin appeared to suppress the initial component of the fluorescence signal produced by depolarizing clamping pulses. The technique for detecting these fluorescence changes and the physico-chemical properties of TNS are described in some detail.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 118 (1998), S. 421-426 
    ISSN: 1432-1106
    Keywords: Key words Intracortical inhibition ; Transcranial magnetic stimulation ; Motor exercise ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The motor-evoked potential (MEP) to transcranial magnetic stimulation (TMS) is inhibited when preceded by a subthreshold TMS stimulus at short intervals (1–6 ms; intracortical inhibition, ICI) and is facilitated when preceded by a subthreshold TMS at longer intervals (10–15 ms; intracortical facilitation, ICF). We studied changes in ICI and ICF associated with two motor tasks requiring a different selectivity in fine motor control of small hand muscles (abductor pollicis brevis muscle, APB, and fourth dorsal interosseous muscle, 4DIO). In experiment 1 (exp. 1), nine healthy subjects completed four sets (5 min duration each) of repetitive (1 Hz) thumb movements. In experiment 2 (exp. 2), the subjects produced the same number of thumb movements, but complete relaxation of 4DIO was demanded. Following free thumb movements (exp. 1), amplitudes of MEPs in response to both single and paired TMS showed a trend to increase with the number of exercise sets in both APB and 4DIO. By contrast, more focal, selective thumb movementsinvolving APB with relaxation of 4DIO (exp. 2) caused an increase in MEP amplitudes after single and paired pulses only in APB, while a marked decrease in MEPs after paired pulses, but not after single TMS, in the actively relaxed 4DIO. This effect was more prominent for the interstimulus interval (ISI) of 1–3 ms than for longer ISIs (8 ms, 10 ms, and 15 ms). F-wave amplitudes reflecting excitability of the alpha motoneuron pool were unaltered in APB and 4DIO, suggesting a supraspinal origin for the observed changes. We conclude that plastic changes of ICI and ICF within the hand representation vary according to the selective requirements of the motor program. Performance of more focal tasks may be associated with a decrease in ICI in muscles engaged in the training task, while at the same time ICI may be increased in an actively relaxed muscle, also required for a focal performance. Additionally, our data further supports the idea that ICI and ICF may be controlled independently.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Key words Functional imaging ; Plasticity ; Motor control ; Deafferentation ; Premotor ; Somatosensory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Although patients with sensory neuropathies and normal muscle power are rare, they have been extensively studied because they are a model for dissociating the sensory and motor components of movement. We have examined these patients to determine the cerebral functional anatomy of movement in the absence of proprioceptive input. In addition, the disabling symptoms of these patients can be substantially improved by visually monitoring their movements. We hypothesized that, during visually guided movements, these patients would show overactivity of regions specialized for visuomotor control with the possible additional involvement of areas that normally process somatosensory information. We used positron emission tomography (PET) and the tracer H2 15O to determine the functional anatomy of visually and non-visually guided finger movements in three patients with long-standing pan-sensory neuropathies and normal muscle power and six healthy controls. Five conditions were performed with the right hand: a sequential finger movement task under visual guidance, the same motor task without observation of the hand, monitoring a video of the same sequential finger movement, a passive visual task observing a reversing checkerboard, and an unconstrained rest condition. Data were analyzed using conventional subtraction techniques with a statistical threshold of z〉2.33 with corrections for multiple comparisons. When compared with the control group, activation was not deficient in any brain areas of the patient cohort in any of the contrasts tested. In particular, in the non-visually guided movement task, in which meaningful visual and proprioceptive input was absent, the patient group activated primary motor, premotor, and cerebellar regions. This suggests that these areas are involved in motor processing independent of sensory input. In all conditions involving visual observation of hand movements, there was highly significant overactivity of the left parietal operculum (SII) and right parieto-occipital cortex (PO) in the patient group. Recent non-human primate studies have suggested that the PO region contains a visual representation of hand movements. Overactivity of this area and the activation of SII by visual input appear to indicate that compensatory overactivity of visual areas and cross-modal plasticity of somatosensory areas occur in deafferented patients. These processes may underlie their ability to compensate for their proprioceptive deficits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Key words Somatotopy ; Input-Output ; Inhibition ; Excitation ; Transcranial magnetic stimulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Integration of tactile afferent signals with motor commands is crucial for the performance of purposeful movements such as during manipulation of an object in the hand. To study the somatotopic organization of sensorimotor integration we applied electrical peripheral conditioning stimuli to a digit located near (homotopic stimulation) or distant from (heterotopic stimulation) relaxed or isometrically contracted intrinsic hand muscles at variable time intervals prior to transcranial magnetic stimulation (TMS). Cutaneous stimulation has previously been shown to modulate the amplitude of the motor evoked potential (MEP) and to shorten the duration of the silent period (SP) evoked by TMS. In relaxed target muscles the time-dependent modulation of TMS-evoked motor responses by homotopic conditioning stimulation differed from modulation by heterotopic stimulation. Similar differences in the modulation pattern evoked by homotopic and heterotopic conditioning stimulation were observed for two distinct target muscles of the hand (abductor digiti minimi, abductor pollicis brevis muscle). Differences in modulation were maximal when the conditioning stimulation was applied 25–30 ms and 150–200 ms prior to TMS. Comparison of the modulation of the amplitudes of MEPs evoked by transcranial electrical stimulation (TES) and the modulation of those evoked by TMS suggests that differences between homotopic and heterotopic stimulation originate subcortically at 25- to 30-ms and, at least partially, cortically at 150- to 200-ms interstimulus intervals. In isometrically contracted intrinsic hand muscles the degree to which the SP was shortened reflected the location and the timing of the conditioning stimulus. Shortening was maximal when the conditioning stimulus was applied nearest to the contracted target muscle and 20 ms prior to the test stimulus. In contrast to the SP duration, the MEP size in voluntarily contracted target muscles was unaffected by the location of the conditioning stimulus. The somatotopic gradient of SP shortening was abolished when the two target muscles were simultaneously activated isometrically. Together, our findings suggest that somatotopy of input-output relationships is implemented at both a spinal and a cortical level in the human central nervous system and may also depend on the motor task involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Comparative Biochemistry and Physiology -- Part A: Physiology 39 (1971), S. 643-648 
    ISSN: 0300-9629
    Keywords: Lobster heart ; cardiac ganglion ; cardiac regulator nerves ; crustacean muscle ; excitatory Junectional potential ; gamma-aminobutyric acid ; glutamate
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    International Journal of Psychophysiology 7 (1989), S. 180-181 
    ISSN: 0167-8760
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine , Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford : Periodicals Archive Online (PAO)
    The British journal for the philosophy of science. 26 (1975) 170 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Clinical & experimental metastasis 11 (1993), S. 235-242 
    ISSN: 1573-7276
    Keywords: cell growth ; cell motility ; c-MET protooncogene ; colon cancer cell ; hepatocyte growth factor ; scatter factor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Hepatocyte growth factor (HGF), also known as scatter factor, regulates both cell motility and the growth of some cell types. We have determined the effects of HGF on the motility and growth of human colon cancer cell lines (HT115, HT29, HRT18 and HT55). Cell motility, as measured by dissociation from carrier beads or by scattering of cell colonies, was greatly increased in all cell lines. The effects were completely blocked by anti-HGF antibody. In contrast, cell growth of HT115, HT29 and HRT18 cells was inhibited by a wide range of concentrations of HGF. HT55 cell growth was also inhibited but needed a prolonged culture period (〉5 days). The HGF receptor/Met protein is highly expressed in the membrane fraction of these cells as determined by Western blotting. It is concluded that HGF has an effect on both colon cancer cell motility and growth, which may be important in the control of the spread of colon cancer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 295 (1982), S. 155-158 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1 Phase-contrast microscopy of unfused cells and hybrids. Human erythrocyte ghosts containing obelin were prepared from washed human erythrocytes by lysing preswollen erythrocytes6 in 10 mM TES (N-Tris-(nydroxymethyl)-methyl-2-amino-ethanesulphonic acid, treated with Chelex-100, see rf. 1) and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...