Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 17 (1994), S. 465-488 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 374 (1981), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 374 (1981), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 781 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Oculomotor ; Saccadic eye movements ; Saccadic burst neurons ; Reticular formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Saccadic omnipause neurons (OPNs) were intracellularly labelled with horseradish peroxidase (HRP) in alert cats and squirrel monkeys. The somas of OPNs were located on or near the midline in the caudal pons and their axons projected to regions of the pontomedullary reticular formation that contain the excitatory and inhibitory burst neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 87 (1991), S. 57-66 
    ISSN: 1432-1106
    Keywords: Vestibulo ; ocular reflex ; Plasticity ; Eye movement ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The vestibulo-ocular reflex (VOR) was studied in adult squirrel monkeys before and after adaptation to magnifying and minifying viewing conditions. Monkeys were subjected to broadband (0.05–0.71 Hz) conditioning rotation for six hours in head yaw, pitch, and roll on separate occasions, and the VORs in these three planes were studied in darkness to assess adaptive plasticity in the reflexes. The gain of the horizontal VOR (H-VOR) averaged 0.8 across the frequency bandwidth studied (0.025–4 Hz). Phase was near 0° from 4 to around 0.1 Hz, but developed a progressive lead as frequency declined further. Normal vertical VOR (V-VOR) gain climbed from 0.6 at 0.025 Hz to near 1 as frequency increased to 4 Hz. Phase lead was more pronounced at low frequencies than in the H-VOR. The normal torsional VOR (T-VOR) qualitatively resembled the V-VOR, showing similar phase but lower gains (0.3–0.7) across the frequency bandwidth. These findings suggest that the dynamics of the V-VOR and T-VOR resemble canal characteristics more closely than does the H-VOR. After adaptation to visual minification and conditioning rotation (0.5X for yaw and pitch, 0X for roll), gain decreased in each of the planes of conditioning. Similarly, gain increased in the plane of conditioning after adaptation to visual magnification (2X). The adaptive changes were greater at low (0.025–1 Hz) than at high (2.5–4 Hz) frequencies, and were more robust when gain was driven downward than upward. However, control (sham) adaptation experiments showed that VOR gain tended to drop slightly over 6 h in the absence of adaptive drive to do so, suggesting that the gain modifications may be more symmetric when referenced to the control. Adaptive VOR gain enhancement or decrement in the plane of conditioning did not result in systematic and parallel changes in orthogonal VOR planes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Efferent ; Lateral line ; Lateralis ; Octavolateralis ; Prey detection ; Toadfish ; Vestibular
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The activity of single lateral line afferent neurons was chronically recorded in free-swimming toadfish. CNS efferent neurons, known to be inhibitory upon peripheral lateral line mechanoreceptors, were activated by stroboscopic and natural visual stimuli. Discharges from irregular-type afferents caused by water movement relative to lateral line neuromasts decreased following stroboscopic stimulation of unrestrained and behaving fish. Visual presentation of natural prey also decreased mechanically evoked afferent firing rates. We show that visual stimuli can activate the efferent system and function in the peripheral processing of mechanical stimuli to the lateral line in biologically relevant contexts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 17 (1973), S. 301-314 
    ISSN: 1432-1106
    Keywords: Vestibulo-ocular reflex ; VIth nucleus ; Flocculus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intra- and extra-cellular responses were recorded with glass microelectrodes from motoneurons in the VIth cranial nuclei of anesthesized rabbits. VIth nucleus motoneurons were identified by their antidromic activation from the VIth nerve. In these motoneurons stimulation of the ipsilateral VIIIth nerve produced IPSPs with disynaptic latencies (mean and S.D., 1.08 ± 0.1 msec) while stimulation of the contralateral VIIIth nerve produced EPSPs with disynaptic latencies (mean and S.D., 1.20 ± 0.18 msec). Correspondingly, direct stimulation of the ipsilateral medial vestibular nucleus (MV), produced IPSPs with monosynaptic latencies (mean and S.D., 0.61±0.15 msec) while direct stimulation of the contralateral MV produced EPSPs with monosynaptic latencies (mean and S.D., 0.61±0.09 msec). Further, with the recording electrode placed within the VIth nucleus to observe the extracellular potentials corresponding to the intracellularly recorded IPSPs and EPSPs, the medulla was systematically tracked with a monopolar stimulating electrode. It was demonstrated that the inhibitory relay cells could be effectively stimulated in the rostral half of the ipsilateral MV and the excitatory relay cells in the rostral half of the contralateral MV. Pharmacological investigation suggested that the inhibitory transmitter involved in the vestibular inhibition is gamma amino-butyric acid or a related substance. Electric stimulation of the flocculus produced a prominant depression in the inhibitory vestibulo-ocular reflex pathway to the VIth nucleus, while the excitatory pathway was free of any similar flocculus inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 17 (1973), S. 285-300 
    ISSN: 1432-1106
    Keywords: Vestibulo-ocular reflex ; IIIrd and IVth nuclei ; Y group
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular and extracellular responses were recorded with glass micro-electrodes from motoneurons in the IIIrd and IVth cranial nuclei of anesthesized rabbits. Five subgroups of neurons innervating the superior rectus (SR), inferior oblique (IO), inferior rectus (IR), medial rectus (MR), and superior oblique (IVth) extraocular muscles were identified by their antidromic activation from the branches of the IIIrd and IVth cranial nerves. The relative positions of the subgroups thus determined were consistent with the histological data on the rabbit. In the SR, IO, IR, and IVth subgroups the effects of ipsilateral VIIIth nerve stimulation were inhibitory, producing disynaptic IPSPs, while the effects of contralateral VIIIth nerve stimulation were excitatory, producing disynaptic EPSPs. In the MR subgroup, however, a mixture of EPSPs and IPSPs was produced by VIIIth nerve stimulation: this was particularly clear on the ipsilateral side. Sites relaying these VIIIth nerve effects to each of the five subgroups were explored by direct stimulation of various brain stem sites. Stimulation of the superior vestibular nucleus (SV) produced IPSPs monosynaptically in all five subgroups on the ipsilateral side as well as in the contralateral MR subgroup. Stimulation of the medial vestibular nucleus (MV) produced EPSPs monosynaptically in all of the five subgroups on the contralateral side as well as in the ipsilateral MR subgroup. Stimulation of the brachium conjunctivum (BC) also produced EPSPs monosynaptically in the contralateral SR, IO, and IR subgroups. Further, while the recording electrode was placed within each of the five subgroups to observe the extracellular potentials corresponding to the intracellularly recorded IPSPs and EPSPs, the medulla and cerebellum were systematically tracked with a monopolar stimulating electrode. It was thus confirmed that the SV is the sole inhibitory relay site, while excitation is relayed by both the MV and the BC. The origin of the BC pathway was traced to the Y-Group for the IO, to the lateral nucleus of the cerebellum (LN) for the IR, and to both the Y-Group and the LN for the SR subgroup.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 13 (1971), S. 306-326 
    ISSN: 1432-1106
    Keywords: Vestibular ; IIIrd nucleus ; PSPs ; Picrotoxin ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Microelectrodes were inserted into IIIrd cranial nucleus of anaesthetized rabbit. IIIrd nucleus was identified by observing the field potentials evoked antidromically by stimulation of IIIrd cranial nerve. After stimulation of VIIIth nerve extracellular field potentials, spike potentials in secondary vestibular fibers, and postsynaptic potentials in IIIrd nucleus neurones were recorded. VIIIth nerve impulses either excite or inhibit IIIrd nucleus neurones postsynaptically with disynaptic latencies around 1.7 msec. By local stimulation of the medulla, it was found that the secondary vestibular impulses inhibiting IIIrd nucleus neurones are mediated by the superior nucleus. The excitatory impulses are relayed by the rostral half of the medial nucleus as well as a certain structure(s) relevant to the brachium conjunctivum. Preliminary pharmacological investigations on the inhibition of IIIrd nucleus neurones are reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...