Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 37 (2000), S. 5-6 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 15 (1995), S. 225-243 
    ISSN: 1573-1405
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper we present a method for optimally estimating the rotation and translation between a camera and a 3-D object from point and/or line correspondences. First we devise an error function and second we show how to minimize this error function. The quadratic nature of this function is made possible by representing rotation and translation with a dual number quaternion. We provide a detailed account of the computational aspects of a trust-region optimization method. This method compares favourably with Newton's method which has extensively been used to solve the problem at hand, with Faugeras-Toscani's linear method (Faugeras and Toscani 1986) for calibrating a camera, and with the Levenberg-Marquardt non-linear optimization method. Finally we present some experimental results which demonstrate the robustness of our method with respect to image noise and matching errors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 22 (1997), S. 173-189 
    ISSN: 1573-1405
    Keywords: perspective n-point problem ; object pose ; weak perspective ; paraperspective ; camera calibration ; extrinsic camera parameters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimation computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon and Davis' method and we show that it belongs to a larger class of methods where the perspective camera model is approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detail an iterative paraperspective pose computation method for both non coplanar and coplanar object points. We analyse the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this paper) has better convergence properties than the iterative weak perspective method. We introduce a simple way of taking into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to camera calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. We compare the results obtained with this method and with a non-linear optimization method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Annals of mathematics and artificial intelligence 13 (1995), S. 281-300 
    ISSN: 1573-7470
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract In this paper, we attack the figure — ground discrimination problem from a combinatorial optimization perspective. In general, the solutions proposed in the past solved this problem only partially: either the mathematical model encoding the figure — ground problem was too simple or the optimization methods that were used were not efficient enough or they could not guarantee to find the global minimum of the cost function describing the figure — ground model. The method that we devised and which is described in this paper is tailored around the following contributions. First, we suggest a mathematical model encoding the figure — ground discrimination problem that makes explicit a definition of shape (or figure) based on cocircularity, smoothness, proximity, and contrast. This model consists of building a cost function on the basis of image element interactions. Moreover, this cost function fits the constraints of aninteracting spin system, which in turn is a well suited physical model to solve hard combinatorial optimization problems. Second, we suggest a combinatorial optimization method for solving the figure — ground problem, namely mean field annealing which combines the mean field approximation and annealing. Mean field annealing may well be viewed as a deterministic approximation of stochastic methods such as simulated annealing. We describe in detail the theoretical bases of this method, derive a computational model, and provide a practical algorithm. Finally, some experimental results are shown for both synthetic and real images.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...