Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We studied stress effects in two cell types, U937 human mono-blastic leukaemia and bovine aortic endothelial (BAE) cells. Ceramide-initiated apoptosis has been investigated in these systems5'13. Exposure of U937 cells to ionizing radiation (10 Gy), hydrogen peroxide (ImM), ultraviolet-C radiation ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Investigational new drugs 17 (1999), S. 227-240 
    ISSN: 1573-0646
    Keywords: apoptosis ; protein kinase C ; sphingoid bases ; safingol ; diglyceride ; bryostatin 1 ; staurosporine ; 7-hydroxy staurosporine (UCN-01) ; 4′-N-benzoyl staurosporine (CGP-41251) ; calphostin C (UCN-1028c)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract Neoplastic cell survival is governed by a balance between pro-apoptotic and anti-apoptotic signals. Noteworthy among several anti-apoptotic signaling elements is the protein kinase C (PKC) isoenzyme family, which mediates a central cytoprotective effect in the regulation of cell survival. Activation of PKC, and subsequent recruitment of numerous downstream elements such as the mitogen-activated protein kinase (MAPK) cascade, opposes initiation of the apoptotic cell death program by diverse cytotoxic stimuli. The understanding that the lethal actions of numerous antineoplastic agents are, in many instances, antagonized by cytoprotective signaling systems has been an important stimulus for the development of novel antineoplastic strategies. In this regard, inhibition of PKC, which has been shown to initiate apoptosis in a variety of malignant cell types, has recently been the focus of intense interest. Furthermore, there is accumulating evidence that selective targeting of PKC may prove useful in improving the therapeutic efficacy of established antineoplastic agents. Such chemosensitizing strategies can involve either (a) direct inhibition of PKC (e.g., following acute treatment with relatively specific inhibitors such as the synthetic sphingoid base analog safingol, or the novel staurosporine derivatives UCN-01 and CGP-41251) or (b) down-regulation (e.g., following chronic treatment with the non-tumor-promoting PKC activator bryostatin 1). In preclinical model systems, suppression of the cytoprotective function(s) of PKC potentiates the activity of cytotoxic agents (e.g., cytarabine) as well as ionizing radiation, and efforts to translate these findings into the clinical arena in humans are currently underway. Although the PKC-driven cytoprotective signaling systems affected by these treatments have not been definitively characterized, interference with PKC activity has been associated with loss of the mitogen-activated protein kinase (MAPK) response. Accordingly, recent pre-clinical studies have demonstrated that pharmacological disruption of the primary MEK-ERK module can mimic the chemopotentiating and radiopotentiating actions of PKC inhibition and/or down-regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...