Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: An NAD+-dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5′- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH4 reduction of the pyridoxal-5′-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5′-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5′-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5′-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5′-phosphate to specific Lys347 residue at or near the coenzyme-binding site of the protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The structural differences between two types of glutamate dehydrogenase (GDH) isoproteins (GDH I and GDH II), homogeneously isolated from bovine brain, were investigated using a biosensor technology and monoclonal antibodies. A total of seven monoclonal antibodies raised against GDH II were produced, and the antibodies recognized a single protein band that comigrates with purified GDH II on sodium dodecyl sulfatepolyacrylamide gel electrophoresis and immunoblot. Of seven anti-GDH II monoclonal antibodies tested in the immunoblot analysis, all seven antibodies interacted with GDH II, whereas only four antibodies recognized the protein band of the other GDH isoprotein, GDH I. When inhibition tests of the GDH isoproteins were performed with the seven anti-GDH II monoclonal antibodies, three antibodies inhibited GDH II activity, whereas only one antibody inhibited GDH i activity. The binding affinity of anti-GDH II monoclonal antibodies for GDH II (KD= 1.0 nM) determined using a biosensor technology (Pharmacia BIAcore) was fivefold higher than for GDH I (KD= 5.3 nM), These results, together with epitope mapping analysis, suggest that there may be structural differences between the two GDH isoproteins, in addition to their different biochemical properties. Using the anti-GDH II antibodies as probes, we also investigated the crossreactivities of brain GDHs from some mammalian and an avian species, showing that the mammalian brain GDH enzymes are related immunologically to each other.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...