Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 29 (1990), S. 3287-3294 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 27 (1988), S. 5179-5188 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 21 (1982), S. 5203-5213 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 12 (1979), S. 1156-1159 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 534-552 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 245 (1973), S. 59-60 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR, The recent article on polypeptide configurational kinetics entitled "The Missing Magnitudes" (Nature, 243, 186; 1973) is, we feel, premature in its conclusions. An explanation, based on sample polydispersity, of differences between the two ranges of molecular times inferred from experiments is ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 30 (1983), S. 549-559 
    ISSN: 1572-9613
    Keywords: Proteins ; conformations ; folding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Protein conformations have been generated with both a Monte Carlo scheme and a simpler two-state noninteracting globule-coil model. Conformational energies are taken to consist of intraresidue and interresidue terms. Interresidue energies are taken to be proportional to the number of nativelike contacts. To describe probable folding pathways, either energy or the number of native residues are employed as simple one-dimensional folding-unfolding coordinates. By considering only conformations at each point on these coordinates, it is possible to obtain detailed conformational descriptions of relatively rare intermediates on the folding pathway. This technique of “trapping” intermediates and statistically characterizing them is useful for studying conformational transitions. Equilibrium folding-unfolding pathways have been constructed by connecting most probable conformations in order along the folding coordinate. Calculations with the noninteracting globule-coil model have been performed with details chosen to correspond to those in the Monte Carlo calculation for pancreatic trypsin inhibitor. Both pathways are similar. Theα helix appears prior to formation of the central beta sheet; beta sheet formation coincides with a large maximum in the free energy because of the attendant loss of conformational entropy. Subsequently the Monte Carlo method indicates two alternative pathways for growth toward either the amino or the carboxyl terminus, followed by completion of the native form. For the globule-coil model, the growth pattern differs somewhat, with the appearance of the single pathway for folding up to the carboxyl terminus prior to completion of folding. This difference may originate in the Monte Carlo sampling procedures or in the simplifications of the globule-coil model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 172-185 
    ISSN: 0887-3585
    Keywords: non-bonded contacts ; coordination of amino acids ; Kirchhoff matrices ; lattice models ; singular value decomposition ; secondary structure content prediction ; contact patterns ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Knowledge of amino acid composition, alone, is verified here to be sufficient for recognizing the structural class, α, β, α+β, or α/β of a given protein with an accuracy of 81%. This is supported by results from exhaustive enumerations of all conformations for all sequences of simple, compact lattice models consisting of two types (hydrophobic and polar) of residues. Different compositions exhibit strong affinities for certain folds. Within the limits of validity of the lattice models, two factors appear to determine the choice of particular folds: 1) the coordination numbers of individual sites and 2) the size and geometry of non-bonded clusters. These two properties, collectively termed the distribution of non-bonded contacts, are quantitatively assessed by an eigenvalue analysis of the so-called Kirchhoff or adjacency matrices obtained by considering the non-bonded interactions on a lattice. The analysis permits the identification of conformations that possess the same distribution of non-bonded contacts. Furthermore, some distributions of non-bonded contacts are favored entropically, due to their high degeneracies. Thus, a competition between enthalpic and entropic effects is effective in determining the choice of a distribution for a given composition. Based on these findings, an analysis of non-bonded contacts in protein structures was made. The analysis shows that proteins belonging to the four distinct folding classes exhibit significant differences in their distributions of non-bonded contacts, which more directly explains the success in predicting structural class from amino acid composition. Proteins 29:172-185, 1997. Published 1997 Wiley-Liss, Inc.This article is a US Goverment work and, as such, is in the public domain in the United States of America.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 22 (1983), S. 79-85 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The equilibrium of protein folding-unfolding has been investigated with a simple two-state, native and random-coil, model; we have termed this the globule-coil model. Energies are calculated by favoring native long-range contact pairs. Most-probable native domains are obtained at all stages of the transition; plausible folding pathways are constructed by connecting these domains by assuming simple growth. Even though native heme-protein contacts represent less than 6% of the total number of native contact pairs, their inclusion appears to change the folding pathway of apomyoglobin from the growth and merging of two native domains to the growth of a single domain. This indicates that pathways derived with this method may be critically sensitive to the details of the contact map and physical constraints during the folding process.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...