Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Ectopic cartilage formation ; Chondrocyte ; Differentiation ; Pancreatic cancer ; Mincralization ; Nude mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract Mineralized as well as nonmineralized cartilage-like structures enclosing cells resembling chondrocytes were found in human-derived undifferentiated but not in poorly differentiated pancreatic adenocarcinoma explants grown in nude mice. The structures reacted with anti-mouse IgG but not with antibodies against human cytokeratin 19, indicating that the newly formed tissue was of mouse origin. High activity of alkaline phosphatase was found in cell layers surrounding the structures and in cells embedded in the matrix. The extracellular matrix was strongly positive after Sirius red staining, reacted with anti-collagen type II antibodies, and the presence of proteoglycans was demonstrated with Alcian blue staining and by metachromasia after Giemsa staining. Electron microscopic inspection revealed the presence of bundles of both thick collagenous fibrils with low levels of fine filamentous material and thin collagenous fibrils with high concentrations of filamentous components. The majority of both types of matrices was found to be partially or completely calcified. The mean area density of the cartilage-like structures in the undifferentiated tumors was 0.31%. The frequent formation of the cartilage-like structures in the rapidly growing undifferentiated explants and its absence in the slowly growing, more differentiated explants suggest that low oxygen tensions in combination with altered levels of growth factors, such as members of the transforming growth factor β superfamily, create conditions that induce differentiation of fibroblasts to chondrocytes. It is concluded that these human tumors grown in nude mice can be used as an in vivo model to study ectopic formation of mineralized cartilage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 103 (1995), S. 93-101 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In the present review, metabolic compartmentation in liver lobules is discussed as being dynamic and more complex than thus far assumed on the basis of numbers of mRNA or protein molecules or the capacity (zero-order activity) of enzymes. Isoenzyme distribution patterns and local kinetic parameters of enzymes may vary over the different zones of liver lobules. As a consequence, metabolic fluxes in vivo at physiological substrate concentrations may be completely different from those that are assumed on the basis of the number of molecules or the capacity of enzymes present in zones of liver lobules. For a more correct estimation of the levels of metabolic processes in the different compartments of liver tissue, local kinetic parameters and substrate concentrations have to be determined to calculate local metabolic fluxes. direct measurements of metabolic fluxes in vivo with the use of noninvasive techniques is a promising alternative and the techniques will become increasingly important in future metabolic research.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular histology 27 (1995), S. 101-118 
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Estimations of metabolic rates in cells and tissues and their regulation on the basis of kinetic properties of enzymes in diluted solutions may not be applicable to intact living cells or tissues. Enzymes often behave differently in living cells because of the high cellular protein content that can lead to homologous and heterologous associations of protein molecules. These associations often change the kinetics of enzymes as part of post-translational regulation mechanisms. An overview is given of these interactions between enzyme molecules or between enzyme molecules and structural elements in the cell, such as the cytoskeleton. Biochemical and histochemical methods are discussed that have been developed for in vivo and in situ analyses of enzyme reactions, particularly for the study of effects of molecular interactions. Quantitative (histochemical) analysis of local enzyme reactions or fluxes of metabolites has become increasingly important. At present, it is possible to calculate local concentrations of substrates in cells or tissue compartments and to express local kinetic parameters in units that are directly comparable with those obtained by biochemical assays of enzymes in suspensions. In situ analysis of the activities of a number of enzymes have revealed variations in their kinetic properties (Km and Vmax) in different tissue compartments. This stresses the importance of in vivo or in situ analyses of cellular metabolism. Finally, histochemical determinations of enzyme activity in parallel with immunohistochemistry for the detection of the total number of enzyme molecules and in situ hybridization of its messenger RNA allow the analysis of regulation mechanisms at all levels between transcription of the gene and post-translational activity modulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...