Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6830
    Keywords: antidepressant ; tubulin ; GTP-binding protein ; adenylyl cyclase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Antidepressants have been used clinically for many years; however, the neurochemical mechanism for their therapeutic effect has not been clarified yet. Recent reports indicate that chronic antidepressant treatment directly affects the postsynaptic membrane to increase the coupling between the stimulatory GTP-binding (G) protein, Gs, and adenylyl cyclase. Tubulin, a cytoskeletal element, is involved in the stimulatory and inhibitory regulation of adenylyl cyclase in rat cerebral cortex via direct transfer of GTP to G proteins. In this study, we investigated whether the functional change of the adenylyl cyclase system caused by chronic antidepressant treatment involves an alteration of tubulin function in the regulation of adenylyl cyclase activity. 2. Male Sprague–Dawley rats were treated once daily with amitriptyline or saline by intraperitoneal injection (10 mg/kg) for 21 days, and their cerebral cortex membranes and GppNHp-liganded tubulin (tubulin-GppNHp) were prepared for what. 3. GppNHp-stimulated adenylyl cyclase activity in cortex membranes from amitriptyline-treated rats was significantly higher than that in control membranes. Furthermore, tubulin–GppNHp prepared from amitriptyline-treated rats was more potent than that from control rats in the stimulation of adenylyl cyclase activity in the cortex membranes of the controls. However, there was no significant difference in manganese-stimulated adenylyl cyclase activity between control and amitriptyline-treated rats. 4. The present results suggest that chronic antidepressant treatment enhances not only the coupling between Gs and the catalytic subunit of adenylyl cyclase but also tubulin interaction with Gs in the cerebral cortex of the rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-29
    Description: In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchi- cal mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy sup- ply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret cri- terion, and considering relationships among integer design variables, uncertain energy demands, and inte- ger and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Since these different types of optimization problems are difficult to solve even using commercial MILP solvers, they are solved by applying a hierarchi- cal MILP method developed for ordinary optimal design problems with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-17
    Description: A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, mixed-integer linear programming method in consideration of the hierarchical relationship between design and operation variables is applied to parts of the robust optimal design method which take long computation times to solve problems efficiently. In a case study, this revised method is applied to the robust optimal design of a cogeneration system with a simple configuration, and the validity and effectiveness of the method are ascertained.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-26
    Description: In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-26
    Description: A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed-integer linear model for constituent equipment. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, a hierarchical optimization method is applied to two types of optimization problems for evaluating robustness to solve them efficiently. In a case study, the proposed method is applied to a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-26
    Description: A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. Since this problem must be solved by a special algorithm and is too difficult to solve even using a commercial solver, a hierarchical optimization approach has been applied to solve the problem but its application is limited only to small scale toy problems. In this paper, some strategies are introduced into the hierarchical optimization approach to enhance the computation efficiency for the purpose of applying the approach to large scale practical problems. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...