Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Physical training ; glucose tolerance ; skeletal muscle glucose metabolism ; insulin sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effect of physical training on glucose tolerance in vivo and skeletal muscle glucose metabolism in vitro was investigated in normal rats. Treadmill running for 10 days up to 240 min/day led to a decrease of basal and glucose-stimulated plasma insulin levels without major alterations of the IV glucose tolerance (1 g/kg body weight). Swim training of two weeks' duration, i. e. exercise up to 2×75 min/ day, which did not induce significant changes in body composition, skeletal muscle glycogen levels or citrate synthase activity, resulted in a significant improvement of IV glucose tolerance and substantial reductions of basal and glucose-stimulated plasma insulin levels. Associated with this apparent improvement of insulin sensitivity in vivo, significant increases of the insulin-stimulated glucose uptake (+ 55%) and lactate oxidation (+ 78%) in vitro were found on perfusion of the isolated hindquarter of swim-trained animals. It is suggested that mild physical training can improve glucose tolerance and insulin sensitivity in normal rats, at least in part, due to an increase of insulin sensitivity of skeletal muscle glucose metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Exercise ; Type 1 (insulin-dependent) diabetes ; CSII ; hypoglycaemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The study was performed to investigate the effects of mild to moderate exercise on blood glucose levels, metabolite concentrations and responses of counterregulatory hormones in tightly controlled Type 1 (insulin-dependent) diabetic patients treated by continuous subcutaneous insulin infusion, and to quantify the measures necessary to prevent acute and late exercise-induced hypoglycaemia. Seven male patients started a 60 min exercise period 90 min after an insulin bolus and a standard breakfast; they were monitored during a post-exercise resting period of 5 h 30 min. Different basal and premeal insulin infusion rates were applied. (Near)normoglycaemia prevailed throughout the study during the control protocol when the subjects did not exercise and received their usual insulin dose. When they exercised without changing the insulin dose, four patients were forced to stop due to hypoglycaemia. This effect of exercise could be attenuated but not completely avoided if the basal infusion rate of insulin was discontinued during the exercise period. The pronounced increase in catecholamine and growth hormone concentrations during exercise were not sufficient to prevent hypoglycaemic reactions. Hypoglycaemia during exercise could only be prevented when the premeal insulin bolus was reduced by 50% in addition to the discontinuation of the basal insulin infusion during exercise. In order to reduce late hypoglycaemic reactions after exercise the best measure proved to be a reduction of the basal insulin infusion rate by 25% during post-exercise hours. Administration of only 50% of the basal insulin infusion rate during this time was associated with blood glucose levels being raised up to 8 mmol/l. In conclusion, Type 1 diabetic patients treated with continuous subcutaneous insulin infusion at (near)normoglycaemia need to reduce their insulin dosage before, during, and after mild to moderate endurance exercise in order to minimize the risk of acute and late hypoglycaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 35 (1992), S. 1187-1188 
    ISSN: 1432-0428
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Total glucose appearance ; glucose production ; glucose disappearance ; metabolic clearance of glucose ; tracer-determined glucose turnover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to determine the role of glucagon in futile or substrate cycling in diabetes, we measured tracer determined glucose kinetics during a combined infusion of 2-3H-glucose (total glucose production) and 6-3H-glucose (glucose production) in six alloxan-diabetic dogs. The animals received either a 420 min infusion of (1) somatostatin alone (0.3 μg·kg−1· min−1), (2) somatostatin with insulin replacement (100 μU·kg−1min−1) or (3) glucagon (6 ng·kg−1· min−1) together with somatostatin and transient insulin replacement. When somatostatin was given alone, plasma glucagon (p〈0.004) and insulin (p〈0.0001) were suppressed. Glucose production and disappearance and plasma glucose concentrations fell (p〈0.0001), but the metabolic clearance of glucose did not change significantly. In the basal state, futile cycling comprised 29±4%, 33±4% and 33±3% of total glucose production in the three goups of studies, which is high compared to normal dogs. The absolute rate of futile cycling fell slightly but significantly from 10.0±1.7 to 8.3±1.7 μmol·kg·−1min−1 (p〈0.0008). When insulin replacement was given during somatostatin infusion to correct for the small somatostatin-induced insulin suppression, there were similar changes in plasma glucagon, glucose concentrations and glucose kinetics as seen during the infusion of somatostatin alone. Futile cycling decreased to a slightly greater extent from 12.8±2.8 to 9.5±1.7μmol·kg−1·min.−1 (p〈0.02). When glucagon was infused together with somatostatin and insulin replacement, plasma glucagon (p〈0.0002) increased and plasma glucose levels rose (p〈0.001) due to a transient increase in glucose production. Metabolic clearance of glucose did not change significantly. There was a marked increase in futile cycling from 12.2±1.7 to 21.7±1.7μmol· kg−1·min−1 (p〈0.0001) in response to exogenous glucagon excess. There was a slight (p〈0.01) drop in free fatty acid levels with somatostatin. Free fatty acid levels nearly doubled (p〈0.025) with the infusion of glucagon together with somatostatin. In conclusion, (a) futile cycling was increased in alloxan-diabetic dogs; (b) glucagon suppression can suppress futile cycling only if total insulin deficiency is prevented; and (3) hyperglucagonaemia increases futile cycling, and this effect is more pronounced during insulin deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...