Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-203X
    Keywords: Key words Intergeneric somatic hybrid ; Oryza sativa L. ; Hordeum vulgare L. ; Chromosome ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An intergeneric somatic hybrid was obtained upon fusion of protoplasts of rice and barley. Protoplasts isolated from suspension cultures of rice cells were fused by electrofusion with protoplasts that had been isolated from young barley leaves. Some of the resultant calli formed green spots and shoots. Only one shoot formed roots, and it was subsequently successfully transferred to soil in a greenhouse. Its morphology closely resembled that of the parental rice plant. Cytological analysis indicated that the plant had both small chromosomes from rice and large chromosomes from barley. Southern hybridization analysis with a fragment of the tryptophan B (trpB) gene revealed both a rice-specific band and a barley-specific band. Mitochondrial (mt) and chloroplast (cp) DNAs were also analyzed using the same method. The plant was shown to contain novel mitochondrial and chloroplast sequence rearrangements that were not detected in either of the parents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Asymmetric hybrid plants ; Monocotyledon ; Oryza sauva L ; Dicotyledon Daucus carota L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Asymmetric hybrid plants were obtained from fused protoplasts of a monocotyledon (Oryza sativa L.) and a dicotyledon (Daucus carota L.). X-ray-irradiated protoplasts isolated from a cytoplasmic malesterile (cms) carrot suspension culture were fused with iodoacetoamide-treated protoplasts isolated from a 5-methyltryptophan (5MT)-resistant rice suspension culture by electrofusion. The complementary recovered cells divided and formed colonies, which were then cultivated on regeneration medium supplemented with 25mg/l 5MT to eliminate any escaped carrot cells. Somatic hybrids were regenerated from 5 of the 5MT-resistant colonies. The morphologies of most of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells possessed 20–22 chromosomes and were resistant to 5MT. An isozyme analysis revealed that several regenerated plants had the peroxidase isozyme patterns of both parents. A Southern hybridization analysis with non-radioactively labelled DNA fragments of the rgp1 gene showed that regenerated plants had hybridizing bands from both rice and carrot. Chloroplast (cp) and mitochondrial (mt) DNAs were also analyzed by Southern hybridization by using several probes. CpDNA patterns of the regenerated plants were indistinguishable from those of the carrot parent. However 1 of the regenerated plants had a novel band pattern of mtDNA that was not detected in either of the parents, indicating a possible recombination of mitochondrial genomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 97 (1998), S. 810-815 
    ISSN: 1432-2242
    Keywords: Key words Protoplast ; Electroporation ; rgp1 ; Tillering ; Transgenic rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The rgp1 gene, which encodes a small GTP-binding protein from rice, was introduced into rice protoplasts by electroporation. Transformed protoplasts were cultured on liquid protoplast-culture medium for 1 month, and then cells that had proliferated were transferred to a selection medium that contained 50 mg/l hygromycin B. Among 50 colonies that were selected and transferred to regeneration medium, 3 colonies generated shoots. However, two of the three shoots failed to form roots and ceased growing. A single regenerated shoot that formed roots was planted in soil and transferred to a greenhouse. Southern hybridization showed that the regenerated plant harbored a single copy of the introduced gene. The transformant (T0) plant was shorter than the controls, it developed three times as many tillers as controls, it developed three times as many tillers as control plants but it produced mostly sterile seeds. In a test of hygromycin resistances, viable seeds segregated into resistant and sensitive seedings at a ratio of approximately 1 : 3. The progeny (T1) plants were short with many tillers, and some produced seeds normally. The T2 seedlings grew more rapidly than control seedlings for the first 28 days after germination, but control plants subsequently outgrew the T2 plants. Northern blotting analysis revealed that the rgp1 gene in T2 plants was expressed consitutively throughout all developmental stages. The results suggest that the observed phenotypic changes were due to expression of the exogenous rgp1 gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 88 (1994), S. 75-80 
    ISSN: 1432-2242
    Keywords: Protoplast ; Fusion ; Nicotiana tabacum ; Daucus carota ; Interfamilial hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Protoplasts of a kanamycin-resistant (KR, nuclear genome), streptomycin-resistant (SR, chloroplast genome) and chlorophyll-deficient (A1, nuclear genome) Nicotiana tabacum (KR-SA) cell suspension cultures or X-ray-irradiated mesophyll protoplasts of kanamycin- and streptomycin-resistant green plants (KR-SR) were fused with protoplasts of a cytoplasmic male-sterile (CMS) Daucus carota L. cell suspension cultures by electrofusion. Somatic hybrid plants were selected for kanamycin resistance and the ability to produce chlorophyll. Most of the regenerated plants had a normal D. carota morphology. Callus induced from these plants possessed 23–32 chromosomes, a number lower than the combined chromosome number (66) of the parents, and were resistant to kanamycin, but they segregated for streptomycin resistance, which indicated that N. tabacum chloroplasts had been eliminated. Genomic DNA from several regenerated plants was analyzed by Southern hybridization for the presence of the neomycin phosphotransferase gene (NPTII); all of the plants analyzed were found to contain this gene. Mitochondrial (mt) DNA was analyzed by Southern hybridization of restriction endonuclease digests of mtDNA with two DNA probes, PKT5 and coxII. The results showed that the two plants analyzed possessed the mitochondria of D. carota. These results demonstrate that the regenerated plants are interfamilial somatic hybrids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key wordsHordeum vulgare L. ; Daucus carota L. ; Interfamilial somatic hybrid ; Low temperature ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to obtain plants that were somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.), we fused protoplasts that had been isolated from 6-month-old suspension cultures of carrot cells with protoplasts isolated from barley mesophyll by electrofusion. After culture for 1 month at 25°C , the cells were cultured for 5 weeks at 4°C , and were then returned to 25°C for culture on a shoot-inducing medium. Three plants (nos. 1, 2 and 3) were regenerated from the cells. The morphology of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells had about 24 chromosomes, fewer than the sum of the numbers of parent chromosomes which was 32. Southern hybridization analysis with fragments of the rgp1 gene used as probe showed that the regenerated plants contained both barley and carrot genomic DNA. Chloroplast (ct) and mitochondrial (mt) DNAs were also analyzed with several probes. The ctDNA of the regenerated plants yielded hybridization bands specific for both barley and carrot when one fragment of rice ctDNA was used as probe. Furthermore, the regenerated plants yielded a barley specific band and a novel band with another fragment of rice ct DNA as a probe. One of the regenerated plants (no. 1) yielded a novel pattern of hybridized bands of mt DNA (with an atp6 probe) that was not detected with either of the parents. These results indicated that the regenerated plants were somatic hybrids of barley and carrot and that recombination of both the chloroplast genomes and the mitochondrial genomes might have occurred.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...