Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 7929-7934 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Effects of thermal noise on the characteristics of the dc superconducting quantum interference device (SQUID) have been studied. Numerical simulation on the SQUID characteristics operating at T=77 K has been performed by taking into account the thermal noise. It is shown that the voltage versus flux relation of the dc SQUID is degraded considerably with the thermal noise. The degradation becomes significant when the inductance of the SQUID increases. Due to this degradation, there exists significant limitation for the range of the inductance available at T=77 K, unlike the case at T=4.2 K. The maximum inductance should be around 200 pH in order to avoid significant degradation of the transfer function. This limited value of the inductance must be taken into account when we realize the SQUID coupled to an input coil. The analytical expression for the degradation of the transfer function due to the thermal noise is also obtained. The theoretical result explains experimental results reported recently.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 5961-5967 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Effects of cumulative ablation on the ejection of particulates and molecular species in pulsed-laser deposition are studied by Mie scattering and laser-induced fluorescence spectroscopy, respectively. When a fresh target is ablated, a large amount of particulates are ejected during several initial shots and rapidly decreased within the first ten shots of ablation. This is due to the ejection of powder residues which are struck on the target surface during the polishing process. After this period, ejection of particulates increased gradually and almost saturated after 200 shots. The saturation characteristic is empirically formulated as a function of the number of cumulative ablations. On the other hand, ejection of molecular species rapidly decreases during the initial 500 ablations and afterwards decreases more slowly with further ablation. The effects of cumulative ablation on the particle ejection are discussed in conjunction with the structural modification of the ablated surface observed by the scanning electron microscope. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...