Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 15 (2003), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Thyroid hormone is an essential modulator of brain development, but little is known about its actions in the adult brain. Hypothyroidism is associated with gene expression changes in both central and peripheral nervous tissue. Functional consequences of adult-onset hypothyroidism include an inability to produce long-term potentiation in rat hippocampus and impaired learning and memory in both rats and man. Long-term potentiation is a form of learning that is dependent on functional N-methyl-d-aspartic acid (NMDA)-preferring ionotropic glutamate receptors. This work examines the expression of ionotropic glutamate receptor subunit mRNA following surgical thyroidectomy with or without thyroid hormone replacement. In situ hybridization histochemistry was used to determine the mRNA levels of the NMDA receptor subunits NR1, NR2A, NR2B, the AMPA receptor subunit GluR1, and the kainate receptor subunit KA2. Reducing circulating concentrations of thyroid hormone by surgical removal of the thyroid gland 2 weeks before sacrifice decreased the expression of NR1 mRNA exclusively in the hippocampus. Conversely, hyperthyroidism selectively reduced NR2B mRNA expression in the dorsal hippocampus. Altering thyroid hormone status had no effect on the expression of KA2 or GluR1 subunit mRNA. The regulation of expression of NR1 and NR2B mRNA by thyroid hormone is a novel mechanism for explaining the relationship between thyroid hormone and cognitive function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 17 (2005), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Hypoglycaemia induced by insulin injection is a powerful stimulus to the hypothalamic-pituitary-adrenal (HPA) axis and drives the secretion of corticotropin-releasing hormone and vasopressin from the neurones in the paraventricular nucleus (PVN), as well as the downstream hormones, adrenocorticotropic hormone and corticosterone. In some brain regions, hypoglycaemia also provokes increases in extracellular fluid concentrations of glutamate. Regulation of glutamatergic mechanisms could be involved in the control of the HPA axis during hypoglycaemic stress and one potential site of regulation might be at the receptors for glutamate, which are expressed in the PVN. Insulin (2.0 IU/kg, i.p.) or saline was administered to adult male Sprague-Dawley rats and the animals were sacrificed 30 min, 180 min and 24 h after injection. The amount of several kainic acid-preferring glutamate receptor mRNAs (i.e. KA2, GluR5 and GluR6) were assessed in the PVN by in situ hybridisation histochemistry. Injection of insulin induced a rapid fall in plasma glucose concentrations, which was mirrored by an increase in plasma corticosterone concentrations. KA2 and GluR5 mRNAs are highly expressed within the rat PVN, and responded to hypoglycaemia with robust increases in expression that endured beyond the period of hypoglycaemia itself. However, GluR6 mRNA is expressed in the areas adjacent to the PVN and hypoglycaemic stress failed to alter expression of this mRNA. These experiments suggest that kainic acid-preferring glutamate receptors are responsive to changes in plasma glucose concentrations and may participate in the activation of the PVN neurones during hypoglycaemic stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1463
    Keywords: Neuroleptics ; dopamine ; prolactin ; hypothalamus ; clozapine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two atypical neuroleptic agents, clozapine and fluperlapine, produced rapid elevations in plasma PRL concentrations that were similar in magnitude to those produced by haloperidol. However, the PRL response to clozapine or fluperlapine was of much shorter duration than that elicited by haloperidol. Clozapine, but neither fluperlapine nor haloperidol, produced a rapid increase in the activity of tuberoinfundibular dopamine (TIDA) neurons, as evidenced by an enhanced accumulation of dihydroxyphenylalanine (DOPA) in the median eminence after the inhibition of DOPA decarboxylase. The clozapine-induced increase in DOPA accumulation was evident within 30 minutes after its administration and persisted for at least 4 hours. The clozapine-induced increase in the activity of TIDA neurons may account, in part, for the abbreviated PRL response to this neuroleptic. In addition, ability to produce a short-lived increase in PRL secretion in the rat appears to be common to the atypicl neuroleptic drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2072
    Keywords: Dopamine ; Prolactin ; Lithium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Maintenance of rats on a lithium-containing diet for 3–21 days resulted in a suppression of prolactin (PRL) secretion in vivo and in vitro. Lithium treatment also resulted in an increase in the activity of tuberoinfundibular dopaminergic neurons, as evidenced by an increased accumulation of dihydroxyphenylalanine (DOPA) in the median eminence after inhibition of DOPA decarboxylase and an increased concentration of dopamine in the anterior pituitary gland. The accumulation of DOPA in the neurointer-mediate lobe of the pituitary gland, the prefrontal cortex, the striatum and the nucleus accumbens was also enhanced by lithium treatment. It is concluded that lithium treatment enhances the synthesis of dopamine in many brain regions and that an increased activity of tuberoinfundibular dopaminergic neurons results in an enhanced inhibitory control of PRL secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...