Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1-induced precursors expressed dopaminergic markers and exhibited depolarization-evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1-induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine-induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Human embryonic stem (hES) cells, due to their capacity of multipotency and self-renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinson's disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co-cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed-1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (〉 95%) contained neuronal or neural precursor markers and a high percentage (〉 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell-derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl-induced depolarization and reuptake of DA. Finally, transplantation of hES-derived DA neurons into the striatum of hemi-parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine-induced rotation and step-adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES-derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell-derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...