Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Dissimilarory nitrate reduction to ammonia ; Growth yield ; Nitrate reductase ; Hexaheme c nitrite reductase ; Expression ; “Spirillum” 5175
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In a batch culture experiment the microaerophilic Campylobacter-like bacterium “Spirillum” 5175 derived its energy for growth from the reduction of nitrate to nitrite and nitrite to ammonia. Hereby, formate served as electron donor, acetate as carbon source, and l-cysteine as sulfur source. Nitrite was quantitatively accumulated in the medium during the reduction of nitrate; reduction of nitrite began only after nitrate was exhausted from the medium. The molar growth yield per mol formate consumed, Ym, was 2.4g/mol for the reduction of nitrate to nitrite and 2.0 g/mol for the conversion of nitrite to ammonia. The gain of ATP per mol of oxidized formate was 20% higher for the reduction of nitrate to nitrite, compared to the reduction of nitrite to ammonia. With succinate as carbon source and nitrite as electron acceptor, Ym was 3.2g/mol formate, i.e. 60% higher than with acetate as carbon source. No significant amount of nitrous oxide or dinitrogen was produced during growth with nitrate or nitrite both in the presence or absence of acetylene. No growth on nitrous oxide was found. The hexaheme c nitrite reductase of “Spirillum” 5175 was an inducible enzyme. It was present in cells cultivated with nitrate or nitrite as electron acceptor. It was absent in cells grown with fumarate, but appeared in high concentration in “Spirillum” 5175 grown on elemental sulfur. Furthermore, the dissimilatory enzymes nitrate reductase and hexaheme c nitrite reductase were localized in the periplasmic part of the cytoplasmic membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 158 (1992), S. 287-293 
    ISSN: 1432-072X
    Keywords: Reduction of sulfur ; Sulfide oxidation ; Microaerobic growth ; “Spirillum” 5175 ; Sulfurospirillum deleyianum ; Wolinella succinogenes ; Campylobacter spec
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Physiological tests, redetermination of G+C values with HPLC and DNA-DNA hybridization were used to determine the taxonomic affiliation of “Spirillum” 5175. This facultatively sulfur-reducing bacterium was compared to the type strains of the phenotypically most similar species Wolinella succinogenes and Campylobacter sputorum biovar bubulus. In addition to morphology, the following physiological properties were in common: use of elemental sulfur, nitrate, nitrite, aspartate, fumarate or malate as electron acceptor for growth with hydrogen or formate under anoxic conditions; microaerobic growth with 2% (v/v) oxygen. The G+C content of Wolinella succinogenes (51.8 mol%) and Campylobacter sputorum biovar bubulus (30.4 mol%) differs about 10 mol% from the G+C content of “Spirillum” 5175 (40.6 mol%). No significant DNA homology could be detected between the three strains. These differences excluded affiliation of “Spirillum” 5175 with the genera Wolinella or Campylobacter despite phenotypic similarities. On the basis of our results and DNA-rRNA hybridization studies by other authors, we established the new genus Sulfurospirillum for the freeliving Campylobacter-like bacteria “Spirillum” 5175 and “Campylobacter spec.” DSM 806. Strain “Spirillum” 5175 is described as the type strain of the new genus and species Sulfurospirillum deleyianum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key words Cytochrome cd1 ; Nitrite reductase ; Nitrous ; oxide reductase ; Denitrification ; Thiobacillus ; denitrificans ; Pseudomonas stutzeri ; DNA hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cytochrome cd 1-nitrite reductase and nitrous oxide reductase of Thiobacillus denitrificans were purified and characterized by biochemical and immunochemical methods. In contrast to the generally soluble nature of the denitrification enzymes, these two enzymes were isolated from the membrane fraction of T. denitrificans and remained active after solubilization with Triton X-100. The properties of the membrane-derived enzymes were similar to those of their soluble counterparts from the same organism. Nitrous oxide reductase activity was inhibited by acetylene. Nitrite reductase and nitrous oxide reductase cross-reacted with antisera raised against the soluble enzymes from Pseudomonas stutzeri. The nirS, norBC, and nosZ genes encoding the cytochrome cd 1-nitrite reductase, nitric oxide reductase, and nitrous oxide reductase, respectively, from P. stutzeri hybridized with genomic DNA from T. denitrificans. Cross-reactivity and similar N-terminal amino acid and gene sequences suggest that the primary structures of the Thiobacillus enzymes are homologous to the soluble proteins from P. stutzeri.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 156 (1991), S. 70-74 
    ISSN: 1432-072X
    Keywords: Nitrige reductase ; Hexaheme cytochrome c ; “Spirillum” strain 5175 ; Dissimilatory nitrate reduction to ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of “Spirillum” strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 μmol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Transmembrane proton gradient ; Desulfovibrio desulfuricans CSN ; 31P NMR ; Cytoplasmic pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The transmembrane proton gradient of the sulfate-reducing bacterium Desulfovibrio desulfuricans strain CSN has been determined by in vivo31P nuclear magnetic resonance (NMR) spectroscopy in the absence of dioxygen. At pH 7.0 in the medium (pHex) the intracellular pH (pHin) was 7.5. By lowering pHex to 5.9 pHin decreased to 7.1. At pHex greater than 7.7 the transmembrane proton gradient (ΔpH) was zero. The uncouplers 3,3′,4′,5-tetrachlorosalicylanilide (TCS) and carbonylcyanide-m-chlorophenylhydrazone (CCCP), or the permeant anion thiocyanate caused complete dissipation of ΔpH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Nitrite oxidation ; Nitrate reduction ; Molybdo-iron-sulfur protein ; Molybdenum center ; Iron-sulfur cluster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrite oxidoreductase was isolated from mixotrophically grown cells of Nitrobacter hamburgensis. The enzyme purified from heat treated membranes was homogeneous by the criteria of polyacrylamide gel electrophoresis and size exclusion chromatography. The monomeric form consisted of two subunits with Mr 115000 and 65000, respectively. The dimeric form of the enzyme contained 0.70 molybdenum, 23.0 iron, 1.76 zinc, and 0.89 copper. The catalytically active enzyme was investigated by visible and electron paramagnetic resonance spectroscopy (EPR) under oxidizing (as isolated), reducing (dithionite), and turnover (nitrite) conditions. As isolated the enzyme exhibited a complex set of EPR signals between 5–75 K, originating from several ironsulfur and molybdenum (V) centers. Addition of the substrate nitrite, or the reducing agent dithionite resulted in a set of new resonances. The molybdenum and the iron-sulfur centers of nitrite oxidoreductase from Nitrobacter hamburgensis were involved in the transformation of nitrite to nitrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Key words Sulfide oxidation ; Nitrate ammonification ; Sulfur respiration ; Sulfur reductase ; Sulfurospirillum deleyianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sulfurospirillum deleyianum grew in batch culture under anoxic conditions with sulfide (up to 5 mM) as electron donor, nitrate as electron acceptor, and acetate as carbon source. Nitrate was reduced to ammonia via nitrite, a quantitatively liberated intermediate. Four moles of sulfide were oxidized to elemental sulfur per mole nitrate converted to ammonia. The molar growth yield per mole sulfide consumed, Ym, was 1.5 ± 0.2 g mol–1 for the reduction of nitrate to ammonia. By this type of metabolism, S. deleyianum connected the biogeochemical cycles of sulfur and nitrogen. The sulfur reductase activity in S. deleyianum was inducible, as the activity depended on the presence of sulfide or elemental sulfur during cultivation with nitrate or fumarate as electron acceptor. Hydrogenase activity was always high, indicating that the enzyme is constitutively expressed. The ammonia-forming nitrite reductase was an inducible enzyme, expressed when cells were cultivated with nitrate, nitrite, or elemental sulfur, but repressed after cultivation with fumarate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 56 (2000), S. 1673-1675 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: A group of anaerobic microorganisms use sulfate as the terminal electron acceptor for energy conservation. The process of sulfate reduction involves several enzymatic steps. One of them is the conversion of adenylyl sulfate (adenosine-5′-phosphosulfate) to sulfite, catalyzed by adenylylsulfate reductase. This enzyme is composed of a FAD-containing α-subunit and a β-subunit harbouring two [4Fe–4S] clusters. Adenylylsulfate reductase was isolated from Archaeoglobus fulgidus under anaerobic conditions and crystallized using the hanging-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals grew in space group P212121, with unit-cell parameters a = 72.4, b = 113.2, c = 194.0 Å. The asymmetric unit probably contains two αβ units. The crystals diffract beyond 2 Å resolution and are suitable for X-ray structure analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (ΔnrfJ,ΔnrfIJ and ΔnrfAIJ) were studied. Mutants ΔnrfAIJ and ΔnrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant ΔnrfJ showed wild-type properties. The NrfA protein formed by mutant ΔnrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key stepsin the biological nitrogen cycle, where it participates inthe anaerobic energy metabolism of dissimilatory nitrate ammonification. Here we report on the crystal structure ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...