Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of (+)-amphetamine on carrier-mediated and electrically stimulated dopamine release were investigated using fast cyclic voltammetry in rat brain slices incorporating the nucleus accumbens, and in the caudate putamen. In the caudate putamen, dopamine release either increased with increasing frequency of local electrical stimulation (hot spots) or did not increase significantly (cold spots); dopamine release increased with increasing frequency of electrical stimulation in the nucleus accumbens. Local pressure application of (+)-amphetamine from a micropipette caused dopamine efflux at all sites examined, and this was not affected by sulpiride, indicating that efflux of dopamine caused by (+)-amphetamine is not regulated by dopamine D2 autoreceptors. (+)-Amphetamine reduced single-pulse electrically stimulated dopamine release at all sites; sulpiride reversed this decrease, indicating that endogenous dopamine released by (+)-amphetamine activates dopamine D2 autoreceptors. In nucleus accumbens and hot spots, (+)-amphetamine did not affect 20-pulse 50-Hz-stimulated dopamine release, whereas in cold spots it potentiated 20-pulse 50-Hz-stimulated dopamine release. We conclude that (+)-amphetamine modifies electrically stimulated dopamine release by uptake inhibition or by indirect activation of D2 autoreceptors; the precise mechanism is determined by site and duration of electrical stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The functional role of N-methyl-d-aspartic acid (NMDA) glutamate receptors in the real-time regulation of single electrical pulse (1 p)-stimulated endogenous dopamine release was investigated in slices of rat caudate putamen using fast cyclic voltammetry at a carbon fibre electrode. In the presence of Mg2+, 20 µM NMDA had a weak effect on background signals but did not affect 1 p-stimulated dopamine release. Removal of Mg2+ increased the background and doubled 1 p-stimulated dopamine release. In the absence of Mg2+, 20 µM NMDA caused a transient “release” of dopamine and decreased the background signal. The 1 p-stimulated dopamine release was subsequently reduced. In the presence of 1 µM (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), superfusion with 20 µM NMDA did not cause a transient “release” of dopamine, and 1 p-stimulated dopamine release was not subsequently attenuated. In the presence of 1 µM tetrodotoxin, 1 p-stimulated dopamine release was abolished, but 20 µM NMDA still caused a transient “release” of dopamine. Removal of Ca2+ from the artificial CSF abolished 1 p-stimulated dopamine release and resulted in a decline in the baseline but did not affect dopamine “release” when 20 µM NMDA was added. The dopamine release-inducing effect of 20 µM NMDA was less pronounced in sites in the caudate putamen where dopamine release increased with frequency of electrical stimulation (hot spots) than in sites where there was little frequency-dependent dopamine release (cold spots). Subsequent 1 p-stimulated dopamine release was less attenuated in cold spots than in hot spots. We conclude that in the absence of Mg2+, NMDA induces release of dopamine by acting at CPP-sensitive NMDA receptors in a Ca2+-independent manner. This transient release depletes dopamine from a storage site from which dopamine is released by 1 p electrical stimulation. These real-time observations of the effects of NMDA on electrical stimulus-independent and -dependent dopamine release may explain the apparently conflicting observations of the effects of NMDA on dopamine release made in previous studies. They also indicate that dopamine release and storage are heterogeneous at different sites in the rat caudate putamen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 288 (1980), S. 181-183 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The high-speed polarographic technique was developed from systems being used for evaluating catecholamine levels in the central nervous system9'10. Our system differs principally in that it is some hundreds of times faster, is carried out at the single-cell, rather than macrocellular, level, and ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 64 (1979), S. 41-43 
    ISSN: 1432-2072
    Keywords: Ventral noradrenaline bundle ; 6-OHDA lesions ; Food ; Reward
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Food reward has been associated with activation of noradrenergic mechanisms in the brain. Using rats trained to press a lever for food reward, we have investigated the effects of 6-hydroxydopamine lesions, which severly depleted hypothalamic noradrenaline, on the willingness of the rats to press the lever for food reward. We found that performance in the food-rewarded task was significantly impaired following such lesions, and that this was especially marked when the task was made more difficult. Form our results we suggest that ventral noradrenaline bundle lesions can decrease the rewarding nature of food, thus making the animals less willing to work for food reward.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...