Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, 〈inlineGraphic alt="inline image" href="urn:x-wiley:0953816X:EJN4233:EJN_4233_mu1" location="equation/EJN_4233_mu1.gif"/〉O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (± 1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Weak transcranial DC stimulation (tDCS) of the human motor cortex results in excitability shifts during and after the end of stimulation, which are most probably localized intracortically. Anodal stimulation enhances excitability, whereas cathodal stimulation reduces it. Although the after-effects of tDCS are NMDA receptor-dependent, nothing is known about the involvement of additional receptors. Here we show that pharmacological strengthening of GABAergic inhibition modulates selectively the after-effects elicited by anodal tDCS. Administration of the GABAA receptor agonist lorazepam resulted in a delayed, but then enhanced and prolonged anodal tDCS-induced excitability elevation. The initial absence of an excitability enhancement under lorazepam is most probably caused by a loss of the anodal tDCS-generated intracortical diminution of inhibition and enhancement of facilitation, which occurs without pharmacological intervention. The reasons for the late-occurring excitability enhancement remain unclear. Because intracortical inhibition and facilitation are not changed in this phase compared with pre-tDCS values, excitability changes originating from remote cortical or subcortical areas could be involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...