Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neuroendocrinology 7 (1995), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The natriuretic peptide receptors (NPR) are membrane-bound guanylate cyclases with extracellular binding domains specific for particular members of the natriuretic peptide family. NPR-A binds atrial natriuretic peptide (ANP) with high affinity, whereas the NPR-B appears to be specific for C-type natriuretic peptide (CNP). Previous data indicating extensive overlap between localization of ANP and CNP in hypothalamic neuroendocrine circuits suggest the importance of determining whether specificity of natriuretic peptide action may be conferred via receptor type present on target cells. To address this issue, we used in situ hybridization histochemistry to localize NPR-A and NPR-B mRNA in the hypothalamus. NPR-A mRNA was not found in substantial abundance in any hypothalamic nucleus; however, detectable NPR-A signal was observed in other brain regions, including the subfornical organ and medial habenula. In contrast, NPR-B mRNA was expressed throughout the hypothalamus, including neurons of the magnocellular and parvocellular paraventricular, the arcuate, and the supraoptic nuclei. Expression was also seen in other nuclei essential to neuroendocrine control, including the median preoptic, anteroventral periventricular, tuberomammillary, ventromedial and suprachiasmatic nuclei. NPR-B mRNA was also observed in the neural lobe of the pituitary gland, suggesting expression by pituicytes. The results suggest that NPR-B is the primary natriuretic peptide receptor in hypothalamus, and by inference indicate that CNP is the primary active natriuretic peptide in neuroendocrine regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pediatric nephrology 14 (2000), S. 629-635 
    ISSN: 1432-198X
    Keywords: Key words Histomorphometry ; In situ hybridization histochemistry ; Molecular morphometry ; Immunohistochemistry ; Bone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Quantitative histomorphometric assessment of bone biopsies represents a powerful and informative method for the study of metabolic bone diseases. It is the gold standard against which the noninvasive ”diagnostic” markers of bone metabolism as well as newly available therapeutic modalities are tested. With the rapid progress in technology of molecular biology, identification of systemic and local biomolecules known to regulate bone metabolism can now be achieved. The study of localization, levels of expression, and synthesis of these factors in bone and its microenvironment is possible through applications of in situ hybridization histochemistry (ISHH) and immunohistochemistry (IHC). Application of ISHH allows study of specific mRNA expression. IHC determines the presence and distribution of target protein in cells. These two methodologies provide the link between the cellular processes of mRNA transcription and translation to the working protein. Combining the established bone histomorphometric techniques with ISHH and IHC elevates the study of bone to new heights, i.e., cellular and molecular mechanistic issues can now be studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...