Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 7289-7295 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Alloying Au into the outermost atomic layer of Ni(111) significantly alters the physical and chemical properties of the surface. The reactivity is investigated by the use of seeded supersonic molecular beams of CH4 and it is found that the nobleness of Au reduces the overall reactivity toward CH4. This is accounted for in an ensemble model resolving the sticking probability on Ni atoms having different nearest neighbor surroundings. Although a mean field description of site distributions is found to be a very good approximation it is improved by using experimentally determined ensemble statistics from STM images. The strong influence of the vibrational temperature on the sticking coefficients of CH4 vs translational energy on the pure Ni(111) is also demonstrated. Desorption energies of CO and D2 is observed to decrease approximately 25–30 kJ/mole as the coverage of Au is increased from 0.0 to 0.7 ML. In TPD spectra of deuterium saturated surface alloys a new clearly resolved desorption state is observed at 180–220 K with maximum intensity around θAu=0.3–0.4 ML. This state is clearly related to chemisorption sites involving both Au and Ni. A site model based on mean field statistics adequately accounts for the appearance of this state. The effect of Au is also evident in the TPD spectra of CO saturated Au/Ni(111) surface alloys where the saturation coverage decreases and new structure develops. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: active sites ; surface alloys ; STM ; molecular beams ; activation barriers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract This report describes a combined experimental and theoretical approach to the problem of designing surface alloys with specific chemical properties. Au-Ni(111) surface alloys were prepared and the distribution of active sites was determined by atomically resolved STM as a function of Au coverage. Using density functional theory the difference in activation energy for methane over the various sites was determined. The activity of the surface could be predicted directly by combining this information with the distribution of sites. Subsequent measurements of the activity proved this method to be quantitative and demonstrated that surface alloys with specific activity can be synthesized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...