Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 213 (2000), S. 203-217 
    ISSN: 1615-6102
    Keywords: Calcium gradient ; Tip growth ; Ratio fluorescence imaging ; Ca2+ chelator ; Voltage clamping ; Neurospora crassa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We examined the ionic regulation of tip growth inNeurospora crassa by a combination of electrophysiology and confocal microscopy. To determine if transmembrane ionic fluxes are required for tip growth, we voltage clamped the membrane from −200 to +50 mV. In this voltage range, transmembrane ionic fluxes would either reverse (e.g., K+) or change dramatically (e.g., Ca2+ influx) but had no effect on hyphal growth rates. Therefore, ionic fluxes (including Ca2+ influx) may not be required for tip growth. However, intracellular Ca2+ may still play an obligatory role in tip growth. To assess this possibility, we first increased cytosolic Ca2+ directly by ionophoresis. Elevated Ca2+ induced subapical branch initiation, often multiple tips. At hyphal tips, fluorescence ratio imaging using fluo-3 and fura-red revealed a pronounced tip-high Ca2+ gradient within 10 μm of the tip in growing hyphae which was not observed in nongrowing hyphae. Injection of the Ca2+ chelator 1,2-bis(ortho-aminophenoxy)ethane-N,N,N′,N′-tetrapotassium acetate consistently inhibited growth concomitantly with a depletion of intracellular Ca2+ and dissipation of the tip-high gradient. We conclude that Ca2+ plays a regulatory role in tip initiation and the maintenance of tip growth. Because plasma membrane ionic fluxes do not play a role in tip growth, we suggest that the tip-high Ca2+ gradient is generated from intracellular Ca2+ stores in the ascomyceteN. crassa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Actin ; Callose ; Coenocyte ; Hypha ; Membrane potential ; Oomycetes ; Wound response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growing hyphae of the oomyceteSaprolegnia ferax wounded by impalement with a ca. 0.2 μm diameter glass microelectrode normally respond within seconds with an apically directed cytoplasmic contraction followed by production of a plug which encases the electrode and occludes its recording of transmembrane potentials. This plug contains callose and Ca2+-associated membranes. To characterize the rapid wounding response, we disrupted specific filamentous (F) actin populations and Ca2+ regulation. Plug formation is inhibited by disruption of F-actin populations and low exogenous Ca2+ but not by inhibition of stretch-activated Ca2+ channels with Gd3+. Therefore, stretch-activated channels are not the immediate sensor. Instead, sensing may involve strain on the actin cytoskeleton which triggers the occlusion response. This wound response is qualitatively similar to the production of septa which isolate developing sporangia and seal severed hyphae, indicating the use of a normal basic cellular developmental system as a protective mechanism against environmental damage. The wound response is essential, since an inability to seal sites of mechanical damage is potentially catastrophic in acellular coenocytic organisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...