Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: This investigation examined if lithium, the primary therapeutic treatment for bipolar affective disorder, modulated the levels of selected signal transduction proteins in PC12 cells. Nerve growth factor (NGF) induced differentiation of PC12 cells, and after 12 days of NGF treatment there were large increases in the levels of the heterotrimeric G protein subunits αo1, αi1, β, and αs, small increases in those of αi2 and αq, and a slight decrease in that of αo2. Lithium (1 mM, equivalent to the therapeutic concentration) selectively reduced NGF-induced increases in levels of G protein subunits, generally having the greatest inhibition on those that were increased the most by NGF. Lithium at 5 mM had greater inhibitory effects than 1 mM lithium on NGF-induced increases in levels of G proteins, but neither concentration of lithium affected the induction of the cytoskeletal protein β-tubulin. Examination of other proteins involved in signal transduction revealed that 12 days of NGF treatment increased the level of protein kinase C-α, but not those of the β, ε, or ζ subtypes, and did not alter the levels of β, γ, or δ phospholipase C. Pretreatment with lithium inhibited the increase in content of protein kinase C-α induced by NGF but had little effect on the proteins not responsive to NGF except for decreasing the levels of protein kinase C-ε. The inhibitory effect of lithium was found not to be due to inhibition of NGF-induced tyrosine phosphorylation, which was unaffected by 5 mM lithium, or to inositol depletion. In summary, use of the dynamic system of NGF-induced PC12 cell differentiation provided a sensitive model in which to identify signal transduction proteins that were influenced by lithium treatment. The large changes caused by a therapeutically equivalent concentration of lithium lend support to the proposal that the selective inhibitory effects of lithium on subtypes of G proteins and protein kinase C may be important therapeutic targets.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The effects of A1C13 on basal and stimulated cyclic AMP production in rat cerebral cortical slices were studied. AICI3 (10–250 μM) had no effect on the cyclic AMP concentration in the absence of drugs that stimulate the synthesis of cyclic AMP. 2-Chloroadenosine (25–200 μM) significantly stimulated the synthesis of cyclic AMP in a concentration-dependent manner, and A1C13 significantly potentiated this response at 50 and 100 μM 2-chloroadenosine. This effect of AICI3 was dependent on preexposure of the slices to A1C13 before addition of the agonist. The potentiation by A1C13 of the 2-chloroadenosine-induced increase in cyclic AMP level was concentration dependent, with significant enhancement by 100 (142% of the control) and 250 (150% of the control) μM AICI3. Lower concentrations of A1C13 had no significant effect on the production of cyclic AMP stimulated by 2-chloroadenosine. AICI3 also potentiated the isoproterenol-induced increase in cyclic AMP production. Forskolin-induced production of cyclic AMP was unaltered by the presence of A1C13. These results demonstrate that A1C13 can potentiate agonist-stimulated cyclic AMP production in a whole-cell brain preparation without the addition of fluoride. This may account for the previously reported aluminum-induced increase in cyclic AMP concentrations in rat brain in vivo.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Monoclonal antibodies were produced that are specific for the three major pertussis toxin-sensitive G protein α-subunits present in mammalian brain—αo, αi1, and αi2—using purified bovine brain G proteins, purified rat brain G proteins, and purified recombinant αi2, respectively. These monoclonal antibodies were used to monitor changes in the concentrations of the three G protein α-subunits during differentiation of PC12 cells and human neuroblastoma LA-N-5 cells. In PC12 cells, levels of αi1 but not αi2 increased during nerve growth factor-induced differentiation. In contrast, αi2 but not αi1 increased when LA-N-5 cells were differentiated with retinoic acid. The concentration of αo increased in both cell lines during differentiation. Electrophoretic resolution of αo subtypes revealed that although αo2 was the major subtype in undifferentiated cells, only the concentration of αo1 increased during differentiation of both PC12 and LA-N-5 cells. The level of 43-kDa growth-associated protein, a protein known to associate with αo, increased similarly to that of αo1. ADP-ribosylation of αo, αi1, and αi2 with pertussis toxin did not alter the reactivities of the monoclonal antibodies, but toxin treatment of cells reduced the concentrations of each protein after 24 h. There was no change in the concentration of αq, which is not ADP-ribosylated by pertussis toxin. Thus, these new monoclonal antibodies enabled the detection of differential increases in subtypes of αi and αo associated with neuronal differentiation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Administration of kainate or pentylenetetrazole increased c-fos, c-jun, junB, and junD mRNA levels in rat brain in a dose-dependent manner. Kainate increased these mRNA levels predominantly in the hippocampus, and pentylenetetrazole was more effective in the cortex. Adrenalectomy (3 days) was used to eliminate endogenous glucocorticoid hormones. Adrenalectomy significantly potentiated kainate-induced increases, compared with increases caused by kainate (4 mg/kg) alone, in the hippocampal mRNA levels of c-fos and junB by 6.5-fold and of junD by twofold and tended to augment c-jun mRNA. Corticosterone administration blocked the potentiated stimulation of these mRNA levels caused by adrenalectomy. Adrenalectomy also significantly increased pentylenetetrazole-induced levels of c-fos mRNA in the cortex. These results demonstrate that glucocorticoids modulate immediate early gene expression in the brain, raising the possibility that this interaction contributes to interneuronal and interindividual differences in responses to stimuli and to the effects of stress- or disease-induced changes in glucocorticoid concentrations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1520-6882
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Glycogen synthase kinase-3 (GSK3) is a crucial enzyme contributing to the regulation of neuronal structure, plasticity and survival, is implicated as a contributory factor in prevalent diseases such as Alzheimer's disease and mood disorders and is regulated by a wide range of signaling systems and pharmacological agents. Therefore, factors regulating GSK3 in vivo are currently of much interest. GSK3 is inhibited by phosphorylation of serine-9 or serine-21 in GSK3β and GSK3α, respectively. This study found that accurate measurements of phospho-Ser-GSK3 in brain are confounded by a rapid post-mortem dephosphorylation, with ∼90% dephosphorylation of both GSK3 isoforms occurring within 2 min post-mortem. Furthermore, three anesthetics, pentobarbital, halothane and chloral hydrate, each caused large in vivo increases in the serine phosphorylation of both GSK3β and GSK3α in several regions of mouse brain. Thus, studies of the phosphorylation state of GSK3 in brain, and perhaps in other tissues, need to take into account post-mortem changes and the effects of anesthetics and there is a direct correlation between anesthesia and high levels of serine-phosphorylated GSK3.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Comparisons of the activity of the G protein-mediated phosphoinositide signal transduction system and of G protein levels were made in two regions of frontal cortex from eight schizophrenic, alcohol-dependent, and control subjects. G protein-mediated phosphoinositide hydrolysis was measured by stimulating cortical membranes incubated with [3H]phosphatidylinositol with 0.3–10 µM guanosine 5′-O-(3-thio)triphosphate (GTPγS). In frontal cortex areas 8/9, GTPγS-induced phosphoinositide hydrolysis was 50% greater in schizophrenic than control or alcohol-dependent subjects, whereas there were no differences among these groups of subjects in the response to GTPγS in frontal cortex area 10. Agonists for dopaminergic, cholinergic, purinergic, serotonergic, histaminergic, and glutamatergic receptors coupled to the phosphoinositide signaling system increased [3H]phosphatidylinositol hydrolysis in a GTPγS-dependent manner. Responses to most agonists were similar in all three subject groups in both cortical regions, with the largest difference being a 40% greater response to dopaminergic receptor stimulation in frontal cortex 8/9 from schizophrenic subjects. Measurements of the levels of phospholipase C-β, and of α-subunits of Gq, Go, Gi1, Gi2, and Gs, made by immunoblot analyses revealed no differences among the groups of subjects except for increased Gαo in schizophrenic subjects and increased Gαo and Gαi1 in alcohol-dependent subjects. These results demonstrate that schizophrenia is associated with increased activity of the phosphoinositide signal transduction system and increased levels of Gαo, whereas the phosphoinositide system was unaltered in alcohol dependence, but Gαo and Gαi1 were increased.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 82 (2002), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Brain-derived neurotrophic factor (BDNF) is a major neurotrophin in the brain and abnormal regulation of BDNF may contribute to the pathophysiology of mood disorders. In the present study, we examined if alterations in the activity of glycogen synthase kinase-3-beta (GSK3β) or treatment with mood stabilizers modulated BDNF-mediated signal transduction pathways in differentiated human neuroblastoma SH-SY5Y cells. BDNF increased the phosphorylation of the forkhead transcription factor FKHRL1 through activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, and the phosphorylation of the cyclic AMP response element binding protein (CREB) through activation of extracellular signal-regulated kinase1/2 (ERK1/2). BDNF also increased serine9-phosphorylation of GSK3β, which inhibits GSK3β activity. Overexpression of GSK3β did not affect BDNF-induced phosphorylation of Akt, ERK1/2, or FKHRL1, but abolished CREB phosphorylation induced by BDNF. This inhibition of BDNF-induced CREB phosphorylation in GSK3β-overexpressing SH-SY5Y cells was blocked by treatment with lithium. In contrast to lithium, sodium valproate and lamotrigine did not affect BDNF-mediated signaling, whereas carbamazepine induced a rapid and prolonged phosphorylation of ERK1/2 and CREB in the absence or the presence of BDNF. Therefore, increased GSK3β selectively attenuates BDNF-induced CREB phosphorylation, and lithium and carbamazepine can facilitate activation of CREB.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Springer
    Neurochemical research 15 (1990), S. 725-738 
    ISSN: 1573-6903
    Schlagwort(e): Phosphoinositide metabolism ; excitatory amino acids ; arachidonic acid ; GABA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract In rat brain slices the synthesis of [3H]phosphoinositides and the production of [3H]inositol monophosphate (IP1) induced by norepinephrine (NE) were inhibited by glutamate. Calcium concentrations were varied to test if these inhibitory effects of glutamate were mediated by a calcium-dependent process. Although reducing calcium or addition of the calcium antagonist verpamil reduced the inhibitory effects of glutamate, these results were equivocal because reduced calcium directly decreased agonist-induced [3H]phosphoinositide synthesis. The inhibitory effects of glutamate were mimicked by quisqualate in a dose-dependent manner, but none of a variety of excitatory amino acid receptor antagonists modified the inhibition caused by quisqualate. It is suggested that glutamate activates a quisqualate-sensitive receptor (for which an antagonist is not available) and causes inhibition of phosphoinositide hydrolysis mediated in part by a direct or indirect inhibitory effect of calcium on phosphoinositide synthesis. Modulatory effects of arachidonic acid were examined because glutamate and calcium can activate phospholipase A2. Arachidonic acid caused a rapid and dose-dependent inhibition of [3H]phosphoinositide synthesis and of NE-stimulated [3H]IP1 production. A similar inhibition of the response to carbachol also occurred. The inhibition caused by arachidonic acid was unchanged by addition of inhibitors of cyclooxygenase or lipoxygenase. Activation of phospholipase A2 with melittin caused inhibitory effects similar to those of arachidonic acid. Inhibitors of phospholipase A2 were found to impair phosphoinositide metabolism, likely due to their lack of specificity for phospholipase A2. Further studies were carried out in slices that were prelabelled with [3H]inositol in an attempt to separate modulatory effects on [3H]phosphoinositide synthesis and agonist-stimulated [3H]IP1 production. Several excitatory amino acid agonists inhibited NE-stimulated [3H]IP1 production. This inhibitory inter-action could be due to impaired synthesis of [3H]phosphoinositides because, even though the slices were prelabeled, addition of unlabelled inositol reduced NE-stimulated [3H]IP1 production, indicating that continuous regeneration of [3H]phosphoinositides is required. In contrast to the inhibitory effects of the excitatory amino acids, gamma-aminobutyric acid (GABA) enhanced the response to NE in cortical and hippocampal slices. GABA also enhanced the response to carbachol in hippocampal and striatal slices and to ibotenic acid in hippocampal slices. Baclofen potentiated the response to NE similarly to the effect of GABA and baclofen partially blocked the inhibitory effect of arachidonic acid but did not alter that of quisqualate.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    ISSN: 1435-1463
    Schlagwort(e): Lithium ; cyclic AMP ; alpha adrenergic receptor ; chlorethylclonidine
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Administration to rats of dietary lithium for 30 days was followed by evaluation of alpha-1 adrenergic receptor binding and of adrenergic-stimulated cyclic AMP (cAMP) accumulation in rat cerebral cortex. Chronic lithium treatment did not alter the binding characteristics of [3H]prazosin or the proportion of alpha-1 adrenergic receptor subtypes distinguished by chlorethylclonidine (CEC) pretreatment in rat cerebral cortical membranes. Accumulation of cAMP in cortical slices incubated with adrenergic agonists was unaffected in lithium-treated rats. These results demonstrate that chronic lithium treatment-induced reduction of norepinephrine (NE)-stimulated phosphoinositide (PI) hydrolysis (Casebolt and Jope, 1987) is not due to changes in the alpha-1 adrenergic receptor and is more sensitive to in vivo lithium treatment than is adrenergic-stimulated cAMP accumulation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...